HTA REPORT

Wireless Capsule Endoscopy
in the diagnosis of small bowel disease
This report should be cited as "Age.na.s. HTA Report - Wireless Capsule Endoscopy in the diagnosis of small bowel disease, Rome, September 2008"
Contributions

Authors:
Fabio Bernardini, Marina Cerbo, Tom Jefferson, Alessandra Lo Scalzo, Marco Ratti
Age.na.s. Agenzia nazionale per i servizi sanitari regionali,
Sezione ISS (Innovazione, Sperimentazione e Sviluppo), Rome (Italy)

Corresponding author:
Alessandra Lo Scalzo (loscalzo@agenas.it)

Experts:
Lucio Capurso
Senior Consultant (Gastroenterology) - Azienda Ospedaliera "San Filippo Neri", Rome (Italy)

Antonio Migliore
Consultant (Biomedical Engineering) - age.na.s. Agenzia nazionale per i servizi sanitari regionali,
Sezione ISS (Innovazione, Sperimentazione e Sviluppo), Rome (Italy)

External Reviewers:
Roberto De Franchis
Department of Medical Sciences,
University of Milan (Italy)

Brendan C. Delaney
Primary Care Clinical Sciences,
University of Birmingham, Birmingham (UK)

Francesco Martelli
Dipartimento Tecnologie e Salute,
ISS – Istituto Superiore di Sanità, Rome (Italy)

In this report Given Imaging GmbH and MG Lorenzatto S.p.A. are not cited as "external reviewers" since, although they had been involved in its production process, they communicated that they do not agree with the report’s conclusions. Given Imaging GmbH and MG Lorenzatto S.p.A. stated that the report does not include/consider some of the important comments and points they made.

Il presente report non contiene il riferimento delle aziende Given Imaging GmbH e MG Lorenzatto S.p.A. come "external reviewers". Tali aziende, pur essendo state contattate durante l’elaborazione del report, hanno comunicato di non riconoscersi nelle conclusioni dello stesso, dal momento che non ritengono essere stati presi in considerazione i commenti e le modifiche delle stesse proposte.
Editing and layout

Dario Fella
Age.na.s. Agenzia Nazionale per i Servizi Sanitari Regionali

Acknowledgements:

The Agenzia Nazionale per i Servizi Sanitari Regionali (age.na.s.) thanks all the external reviewers who kindly provided comments on an earlier draft of this report.

The Age.Na.S. also thanks those who contributed to the realisation of this report providing market details, Paolo Gazzaniga and Fernanda Gellona from Association of producers and distributors of medical devices (ASSOBIOMEDICA) and the responding medical centres of endoscopy and gastroenterology (see Appendix 7).

Age.Na.S. also thanks Carlo Di Pietrantonj and Alessandro Rivetti from SEREMI (Servizio di riferimento Regionale di Epidemiologia, ASL 20, Alessandria, Italy) for their help in designing and carrying out the search strategy.
HTA REPORT
Wireless Capsule Endoscopy
in the diagnosis of small bowel disease

Executive summary ..11
Sintesi ..13

1. Background
 1.1 Clinical problem and indications19
 1.1.2 Obscure gastrointestinal bleeding (OGIB)19
 1.1.3 Crohn Disease (CD)20
 1.1.4 Coeliac disease (COD)20
 1.1.5 Familial Adenomatous Polyposis (FAP)20

2. Technology, procedure and alternatives
 2.1 Technology ..23
 2.2 Procedure ...23
 2.3 The alternatives ...24

3. The marketing status of WCE
 and current reimbursement arrangements27

4. Report’s objectives: policy question and research questions29

5. Assessing the available evidence
 5.1 Methods ..31
 5.1.1 Health Technology Assessments reports
 and systematic reviews31
 5.1.2 Primary studies31
2b. Standard technology for diagnosis of bowel diseases97
3. Search Strategy ...105
4. Tables of comparative studies ...107
5. Tables on Safety ...129
6. List of citations and reasons for exclusion133
7. Author questions ...159
8. Responding Centres ..161
9. Questionnaire Wireless Capsule Endoscopy163
10. Wireless capsule and traditional Endoscopy:
 patient acceptability ..173
Executive summary

One-liner

A quick diagnosis for occult bleeding in the gut is necessary. We summarised the evidence of performance and impact of the video capsule developed for this purpose.

Background

The Wireless Capsule Endoscopy (WCE) is a recent technology that allows imaging of the small intestine, an anatomic site that has proved peculiarly difficult to visualise. The patient swallows a small capsule, which whilst moving through the gastrointestinal tract, captures images. The main indication for WCE use is diagnosis of Obscure Gastrointestinal Bleeding in adults, which is defined as bleeding of unknown origin that persists, or recurs, or is visible after a negative colonoscopy and/or upper endoscopy result. Obscure Gastrointestinal Bleeding is a syndrome or group of symptoms rather than a single pathology, and as such makes it difficult to make reliable estimates of prevalence. In recent years indications for WCE use are increasing, but this may not be supported by sufficient evidence. Anecdotal evidence and expert opinion about the diffusion of WCEs imply that Italy is the country where its use is most widespread. A systematic assessment of this device for the Italian context has become urgent since new models of the WCE at higher prices are currently becoming available on the International market.

Objectives

To identify and summarise available evidence about the diagnostic accuracy and safety of WCE for Obscure Gastrointestinal Bleeding, Crohn’s disease, familiar polyposis, and Celiac disease in the small bowel, its related costs and acceptability.

Methods

We ran searches on Medline, Embase and Cochrane Library, looking for evidence of safety, diagnostic accuracy, economic impact and patient’s acceptability. We identified recent evidence synthesis studies on which to base our assessment, updated and transferred results to the Italian context and collected primary data on safety, use and acceptability of WCE in Italy.

Results

We included the latest HTA report (with 10 studies fulfilling our inclusion criteria) and 17 primary studies to update the HTA report. We identified only one randomised controlled trial comparing WCE with Push Enteroscopy. The remainder of the studies were affected by poor study design
and their results could not be interpreted. We sent 116 questionnaires to centres performing the WCE requesting information on indications, diagnosis, safety and costs. We received 56 answers (48%) indicating very high variability of WCE use across the country. The main indication was a positive fecal occult blood test (45%), followed by Inflammatory Bowel Disease (19%). Angiodysplasia was the most frequent diagnosis (39.5%) followed by Inflammatory Bowel Disease (18.3%) and polyposis (7.8%). In 2006, 2457 WCE procedures were carried out, with 17 serious harm cases (1%) and 375 failed procedures (15.3%) reported. The average cost per procedure in 2006 was €1.108 in a medium throughput centre (44 WCEs per annum). We surveyed 126 patients in the 5 centres with the highest annual WCE throughput. Sixty eight percent of patients (84) found the WCE procedure tolerable compared with 33% (39 patients) for colonoscopy or oesophago-gastro-duodenoscopy patients. The equivalent data for the induction of anxiety were 25 (20%) and 60 (52%).

Conclusions

Based on evidence from one randomised controlled trial the WCE appears dominant for the diagnosis of Obscure Gastrointestinal Bleeding in the small bowel compared to Push Enteroscopy. However its dominance is based on tolerability, rather than proof of a superior diagnostic accuracy. The WCE procedure has a high failure rate, results in serious harms in 1% of cases, but is more acceptable to patients than its alternatives. Given its tiny evidence base, high cost, and potentially high failure rate, the WCE procedure should be only be reimbursed if used in a valid evidence-generating framework.
Sintesi

Problema clinico e indicazioni per l’utilizzo della VCE

Le particolari caratteristiche dell’intestino tenue, una configurazione complessa e una lunghezza che si aggira in media intorno ai 6 metri, rendono difficile la sua visualizzazione che è possibile solo in parte attraverso endoscopia tradizionale e/o esami radiologici. Quando queste procedure danno esito negativo, è necessario poter visualizzare anche le parti di intestino non raggiunte ricorrendo a tecniche alternative, come la Video Capsula Endoscopica (VCE) che permette la visualizzazione dell’intero tratto gastrointestinale. Le indicazioni per la VCE sono oggi molteplici: sangue occulto nelle feci (OGIB), ma anche diagnosi e valutazione della severità della malattia di Crohn (CD), diagnosi per la celiachia (COD) e poliposi familiare (FAP).

Per OGIB, acronimo di Obscure Gastrointestinal Bleeding, si intende la presenza, permanente e/o ricorrente, di sangue di origine sconosciuta nelle feci, sospetto e/o identificato a seguito di test IDA (Iron Deficiency Anemia), test FOBT (Faecal Occult Blood Test) o sanguinamento visibile anche dopo colonoscopia e gastroscopia, che abbiano dato esito negativo (Zuckerman, 1999). Si stima che l’OGIB sia dovuto nel 5% dei casi a lesioni nell’intestino tenue (American Gastroenterological Association, 2007). La causa più comune delle lesioni nel tenue è l’angiodisplasia, all’origine del 70%-80% di tutti i casi di OGIB, seguita dal tumore (Lewis, 1994).

La malattia di Crohn (CD) è un’enterite subcronica idiopatica, che interessa soprattutto l’ileo terminale ed è caratterizzata da ulcerazioni che possono causare fistole e stenosi dell’intestino. L’incidenza in Europa meridionale è di 3.6/100,000, mentre in Italia una recente ricerca ha stimato che 1 persona ogni 100.000 è affetta da CD (Schivanada et al, 1996). La Celiachia (COD) è una malattia dovuta all’intolleranza al glutine, che provoca infiammazione cronica e atrofia della muscosa dell’intestino. Secondo la National Digestive Diseases Information Clearinghouse, in Italia circa 1 persona su 250 è celiaca. La Poliposi familiare ereditaria comporta la tendenza a sviluppare polipi intestinali precancerosi che, se non trattati in tempo, possono trasformarsi in tumori. In caso di poliposi adenomatosa la crescita dei polipi si presenta come molto lenta. L’incidenza della FAP varia da 1 ogni 7,000 a 1 ogni 22,000 individui (Genetics Home Reference).

Descrizione della tecnologia e sue alternative

L’endoscopia mediante Video Capsula Endoscopica (VCE) può essere eseguita in ambulatorio, in ricovero ordinario o in day hospital. Il paziente ingoia la capsule dopo avere digiunato durante la notte (8-12 ore), e questa riprende con una micro video camera tutto il tratto intestinale mentre lo percorre. Dopo circa 8 ore la batteria della videocamera si esaurisce e le immagini ed i dati registrati dalla capsula sono scaricati sul PC, dal registratore posto su una cintura applicata sul corpo del paziente. La procedura non è raccomandata in pazienti che hanno una storia di restringimenti intestinali e/o ostruzioni, portatori di pacemaker cardiaci o di altre apparecchiature elettroniche impiantate. Rispetto ai possibili comparatori della VCE, alcune tecniche endoscopiche che vengono annoverate tra le alternative in realtà non permettono la visualizzazione di tutto l’intestino tenue. In letteratura, gli studi individuati si basano sul confronto tra VCE e diversi altri comparatori (vedi Appendici n.2a e 2b nel testo del report). Tra esse, come confermato da una nostra indagine che ha coinvolto 56 gastroenterologi, la DBE rappresenterebbe l’unico comparatore valido.
Obiettivi

In questo quadro, a fronte di una diffusione della VCE in Italia che gli esperti giudicano ampia, il lavoro svolto ha avuto due obiettivi:

1) valutare le evidenze disponibili in letteratura per le diverse indicazioni di utilizzo della capsula;
2) quantificare l’effettiva diffusione della tecnologia in Italia, le sue modalità di rimborso ed utilizzo, i costi ad essa connessi, l’accettabilità da parte del paziente.

Metodi

Nel caso del primo obiettivo, è stata svolta una revisione sistematica della letteratura. Per il secondo obiettivo sono state effettuate un’analisi di contesto, per identificare la situazione di mercato della VCE in Italia, ed un’indagine nazionale per la raccolta di dati primari (survey), data la natura, fortemente legata al contesto d’uso, di questo tipo di informazioni e l’assenza, in letteratura, di informazioni relative a costi e diffusione della VCE in Italia.

Per la revisione sistematica, le fonti consultate sono state Medline, Embase e la Cochrane Library e, per il reperimento di report di HTA sulla VCE, è stato consultato il database dello “York Centre for Review and Dissemination”. Il report più recente sulla VCE, “Endoscopie par Capsule” del Health Care Knowledge Centre (KCE) belga, pubblicato nel 2005, è stato il nostro punto di partenza: la ricerca bibliografica compiuta è stata, infatti, finalizzata all’aggiornamento, per gli anni dal 2005 al 2007, della revisione sistematica presente nel report del KCE. L’applicazione dei nostri criteri di inclusione ha portato alla identificazione di un totale di 27 studi (per i dettagli completi relativi a strategia di ricerca e criteri di inclusione vedi cap. 5.1 e Appendici 1 e 3 del report). Gli outcome considerati sono stati, oltre all’accuratezza diagnostica, anche l’accettabilità da parte del paziente, l’impatto economico e la sicurezza della VCE.

Per l’analisi di contesto e l’indagine nazionale abbiamo dovuto prima individuare tutti i centri di endoscopia e/o gastroenterologia italiani che, nell’anno 2006, hanno erogato prestazioni diagnostiche con VCE. A questo scopo è stato utilizzato il database clienti forniti dal distributore italiano, M.G. Lorenzatto S.p.a., di cui abbiamo controllato la completezza attraverso il confronto con le fonti ministeriali (database di tutti i centri di gastroenterologia e endoscopia in Italia) e con altri database non istituzionali (database dei gastroenterologi iscritti al CICE – Club Italiano della Video Capsula). Ai centri identificati è quindi stato inviato un primo questionario finalizzato alla rilevazione di dati e informazioni sulle modalità d’utilizzo della VCE e sui suoi costi, in termini di materiali, ma anche di tempo speso da parte dei professionisti impegnati nella procedura (periodo rilevazione: dicembre 2007 - marzo 2008). Un secondo questionario rivolto ai pazienti è stato inviato a 5 centri, selezionati ex post sulla base dei volumi annui di utilizzo della capsula, allo scopo di valutare l’effettiva soddisfazione del paziente relativamente all’utilizzo della VCE, nonché alcuni costi indiretti, come il tempo speso per essere sottoposto alla procedura, in confronto ad altri esami endoscopici (periodo rilevazione: febbraio-maggio 2008).
Risultati

Revisione sistematica

È stato individuato un unico trial randomizzato (De Leusse et al.) pubblicato, tra l’altro, di recente, nel 2007, dopo 6 anni dall’entrata della VCE sul mercato italiano. Questo studio su pazienti OGIB è di buona qualità, ma oltre ad avere alcuni limiti di potenza campionaria, non confronta la VCE con il suo effettivo comparatore (la DBE), ma con la PE che non visualizza, come accennato, l’intero tratto intestinale. Gli autori, infatti, concluono consigliando l’utilizzo della capsula come metodo complementare, e non alternativo, alla DBE.

Rispetto all’accuratezza diagnostica, tutti gli studi sull’utilizzo della VCE in pazienti OGIB, indicano per la VCE una maggiore accuratezza diagnostica se confrontata con quella di PE, DBE e altre tecniche radiologiche. D’altra parte, eccetto il caso del trial di De Leusse, vi sono limiti nel disegno adottato da tutti gli altri studi, che rendono le conclusioni non attendibili. Essi presentano, infatti, un disegno di tipo sequenziale, in cui lo stesso paziente a intervalli di tempo variabile da studio a studio, non sempre riportati, viene sottoposto alla VCE e quindi al comparatore, o viceversa, fungendo sostanzialmente da “controllo” di sé stesso. Il tempo che intercorre tra una procedura e l’altra appare però molto rilevante in termini diagnostici nel caso dei pazienti OGIB, dato che il sanguinamento occulto è spesso dovuto a lesioni angiodisplasiche. Queste lesioni, possono, infatti, variare molto velocemente, con il risultato che uno stesso paziente dopo una sola settimana, può non presentarsi più con le stesse caratteristiche. Il disegno dunque, se punta a minimizzare le variabili confondenti, con il confronto dello stesso paziente in tempi diversi, riesce di ottenere il risultato opposto. Si confrontano infatti i dati clinici ottenuti su un individuo con una procedura e poi con l’altra, ma dal punto di vista delle lesioni da identificare quello stesso soggetto potrebbe essere molto diverso da sé stesso, anche dopo una sola settimana.

Gli studi individuati, inoltre, oltre a non avere un disegno appropriato, sono anche in numero non alto, una volta distinti in base sia al tipo di indicazioni, sia al tipo di comparatore. Per i pazienti OGIB abbiamo, infatti, identificato 7 studi che comparano PE e VCE, 5 DBE vs VCE, mentre 5 riguardano varie procedure di tipo radiologico vs VCE. Per il morbo di Crohn sono stati identificati 6 studi, che comparano la VCE a varie tecniche radiologiche e/o alla PE, mentre per la FAP sono stati identificati solo 3 studi. Per la celiachia nessuno tra gli studi individuati, ha soddisfatto i criteri di selezione per la revisione sistematica.

Rispetto alla sicurezza, aggregando i dati degli studi che riportano informazioni su questa dimensione, risulta che su un totale di 1236 pazienti il numero di eventi avversi è molto alto ed è pari a circa il 3%, mentre si incorre in problemi tecnici nel 7% circa dei casi. Per la parte economica nessuno degli studi selezionati contiene informazioni, mentre per la accettabilità da parte dei pazienti solo 3 studi su 27, trattano l’argomento sebbene, per lo più, in modo non metodologicamente fondato, ed evidenziando una generica preferenza del paziente per la tecnica diagnostica in analisi.
Analisi di contesto e raccolta di dati primari (survey nazionale)

La survey per la raccolta di dati relativi all’utilizzo e ai costi della VCE ha coinvolto tutti i 116 centri individuati (Cap 6 e Appendice 7) con una percentuale di ritorno del questionario su utilizzo e costi, del 48% (56 centri su 116). I centri rispondenti sono nel 91% dei casi pubblici e, nel 2006, risultano avere effettuato un totale 2457 endoscopie con VCE. Il regime ambulatoriale viene utilizzato nel 31% dei casi, il regime di ricovero nel 43% e il day hospital nel 26%. Dal punto di vista clinico, in media, ogni paziente prima di essere sottoposto alla VCE risulta avere già eseguito almeno 2 altri esami endoscopici con esito negativo e, nel 40% dei casi la diagnosi principale dopo la VCE è di angiodisplasia (vedi Figura 6.10 nel testo del report). Dal punto di vista della sicurezza, nell’1% dei casi si sono verificati eventi quali ritenzione della capsula, occlusioni intestinali e/o subintestinali. Più alte sono le percentuali di fallimento dell’esame (15%), dovuto nel 6% dei casi a scaricamento della batteria pre termine, e nel 9% dei casi alle caratteristiche fisiche dei pazienti. Il 3% dei pazienti ha invece ripetuto l’esame per inadeguata preparazione (vedi Tabella 6.12 nel testo del report).

Dal punto di vista dei costi, una forte variabilità è stata rilevata per i prezzi di hardware e software (€ 43.108 in media), mentre il prezzo di vendita della capsula appare invece costante (in media € 642,00 IVA compresa). I dati relativi al tempo dedicato da medici, infermieri e altro personale nello svolgimento della procedura, hanno permesso una stima del budget impact in tre diversi scenari, distinti in base al numero alto (190/anno), medio (44/anno) o basso (10/anno) di esami VCE effettuati in un anno. Il numero di esami annuali risulta influire, in ragione della variabile tempo/operatore, sui costi unitari: l’impatto economico di un singolo esame nel caso di un centro con volumi bassi di utilizzo è di € 1.624,30, mentre nel caso di volumi medi scende a € 1.108,41, per ridursi ulteriormente in centri con almeno 190 VCE anno, il cui costo unitario è stimato pari a € 998,28 (Tavola 6.14 nel testo del report).

L’indagine sui pazienti ha interessato 116 individui evidenziando che non c’è risparmio di tempo da parte del paziente nel sottoporsi alla VCE piuttosto che ad altre procedure più invasive: il 70% di coloro che si sottopongono alla VCE perdono più di 7 ore della propria giornata (Figura 6.15 nel testo del report). Dal punto di vista della facilità della procedura e dei livelli di stress connessi la VCE, questa appare invece meglio tollerata di altre procedure, e ciò anche dal punto di vista del dolore, che non è assolutamente percepito dall’83% dei rispondenti nel caso della VCE (Figura 6.18 nel testo del report).
Discussione

La valutazione relativa alla qualità degli studi è negativa e questo determina una qualche incertezza rispetto alla affidabilità delle loro conclusioni su accuratezza diagnostica e sicurezza. Esiste al momento un solo trial randomizzato, pubblicato nel 2007 (De Leusse et al), e riguarda i pazienti con OGIB e la comparazione tra performance della VCE e della PE, che però non raggiunge tutto il tratto dell’intestino tenue. Gli altri studi sono distinguibili in studi che coinvolgono pazienti OGIB, FAP o Crohn, ed ogni gruppo di studi è ulteriormente diviso in base al “comparatore”. In ogni gruppo e sottogruppo è presente lo stesso disegno di studio “sequenziale” fonte di forte bias nei risultati finali, dato che le lesioni che causano sanguinamento sono, in altissima percentuale, di tipo angiodisplasico e, dunque, con una alta variabilità morfologica in tempi molto brevi (dato presente in letteratura e confermato dalla nostra indagine nazionale). Questo rende il disegno utilizzato inaffidabile, ed i risultati ottenuti su questa base di evidenza, potenzialmente non affidabili. L’analisi di contesto e la survey hanno evidenziato un’alta diffusione della procedura, ed un uso che non pare essere basato su criteri di efficienza ed economie di scala, se si considerano i risultati della budget analysis effettuata sui tre scenari. Alla raccolta di dati di costo non è stato possibile fare seguire una valutazione economica di costo efficacia per la mancanza di un chiaro comparatore, di evidenze solide e di stime di prevalenza attendibili per le varie indicazioni.

Raccomandazione

Sarebbe importante che nel futuro il rimborso della VCE fosse legato alla produzione di evidenze fondate su trial randomizzati ben costruiti, il cui obiettivo sia testare le performance della tecnologia per le sue diverse indicazioni, sotto la supervisione di una commissione scientifica ed etica. Questo tipo di approccio, che a livello internazionale è già in uso (ed è chiamato Coverage with Evidence Development), dovrebbe essere adottato per tutte le tecnologie emergenti prima che queste si diffondano, in modo non governato e spesso senza sufficienti evidenze, in Italia. In particolare, rispetto al contesto italiano alcune nuove indicazioni proposte, come per la diagnosi di celiachia, appaiano inutili in quanto per tale diagnosi è comunque necessaria una biopsia che affermi l’effettiva presenza della patologia.
Bibliografia

Zuckerman GR, Prakash C, Askin MP, Lewis BS. AGA technical review on the evaluation and management of occult and obscure gastrointestinal bleeding. Gastroenterology 1999;118:201-221.
1. Background

1.1 Clinical problem and indications

The characteristics of the human small bowel, a complex looped configuration/structure and a huge length (around 6 metres), make its examination difficult. For the diagnosis of small bowel diseases endoscopy can be used to determine the causes of obscure gastrointestinal bleeding (OGIB), Crohn’s disease (CD) and coeliac disease (COD) (see relative sections for definitions).

Visualisation of the small bowel is possible using different radiological and traditional endoscopic procedures, the latter such as Push Enteroscopy (PE) does not always allow the examination of the entire organ (see section 2). When a source of bleeding cannot be detected with the above procedures, and this occurs in 5-10% of OGIB cases (Myers1, and results of the Italian survey held at Torgiano’s Gastroenterologist meeting in 2007, see Appendix 1), the lesion causing the bleeding could be located in the part of the small bowel not yet visualised.

Wireless Capsule Endoscopy (WCE), approved in 2001 by the Food and Drug Administration in the United States, allows visualisation of the entire small bowel. The capsule is being used for OGIB; for the diagnosis of CD, and for the assessment of its extent and severity; in the diagnosis of small bowel tumours; in the detection of small bowel injury associated with the use of non steroidal anti-inflammatory drugs; in the delineation of type of abdominal pain and in the assessment of COD.

1.1.2. Obscure gastrointestinal bleeding (OGIB)

OGIB is defined as bleeding of unknown origin that persist or recurs, as in recurrent or persistent Iron Deficiency Anemia (IDA), positive Faecal Occult Blood Test (FOBT), or visible bleeding after a negative colonoscopy and/or upper endoscopy result. Obscure bleeding can thus have two clinical forms: obscure-occult, as manifested by recurrent IDA and/or recurrent positive FOBT results, and obscure-overt, with recurrent passage of visible blood (Zuckerman2).

OGIB could be due to lesions that are overlooked in the esophagus, stomach, and colon during initial workup or lesions in the small intestine that are difficult to visualise with conventional endoscopy and radiologic imaging. Overall lesions in the small intestine account for approximately 5% of causes of OGIB (American Gastroenterological Association, 20073). Medical imaging of the small intestine has been a very difficult due to limited visualisation of the lumen.

The principal causes of small bowel bleeding are:

- Angiodysplasia;
- Vascular lesions;
- Adenocarcinoma;
- Lymphoma;
- Carcinoid Tumour;
• Ulcers;
• Crohn's disease;
• Polyps.

The most common cause of small intestine bleeding is Angiodysplasias: 70%-80% of all OGIB are due to these kind of lesions, while tumours are in fact the second most common cause (Lewis4).

1.1.3 Crohn Disease (CD)

CD is a subacute chronic enteritis, of unknown cause, involving the terminal ileum and less frequently other parts of the gastrointestinal tract; characterised by patchy deep ulcers that may cause fistulas, and narrowing and thickening of the bowel by fibrosis and lymphocytic infiltration, with noncaseating tuberculoid granulomas that may also be found in regional lymph nodes. Symptoms include fever, diarrhea, cramping abdominal pain, and weight loss (Stedman’s Medical Dictionary5).

Incidence rates for CD were generally lower and were similar for men and women, with rates for both sexes declining with increasing age. The European Collaborative Study on Inflammatory Bowel Disease (EC-IBD) indicated that in Northern Europe the incidence rates of CD patients for 100,000 population aged 15 years or over 6.3/100,000, while in Southern Europe the number of CD patients was 3.6/100,000. Data from the 4 Italian centres involved in the research showed that 1/100,000 had CD (Schivanada et al.6).

1.1.4 Coeliac disease (COD)

COD occurs in both children and adults and is characterised by sensitivity to gluten, with chronic inflammation and atrophy of the mucose of the upper small intestine; symptoms include diarrhoea, malabsorption, steatorrhea, nutritional and vitamin deficiencies, and failure to thrive, or short stature (Stedman’s Medical Dictionary5). This digestive disease damages the small intestine and interferes with the absorption of nutrients.

Data on the prevalence of COD is spotty and more research is needed to learn the true prevalence, as in Italy, a National register on inflammatory bowel diseases (to which COD belongs) is not yet available. According to the National Digestive Diseases Information Clearinghouse7, in Italy about 1 in 250 people have COD. However, it could be underdiagnosed due to symptoms which are common to other pathologies, unfamiliarity with the disease and lack of specific expertise.

1.1.5 Familial Adenomatous Polyposis (FAP)

FAP is an inherited disorder characterised by cancer of the large intestine (colon) and rectum. People with the classic type of familial adenomatous polyposis begin to develop multiple noncancerous (benign) growths (polyps) in the colon, which may become malignant (cancerous). Some
people have a variant of the disorder, called attenuated familial adenomatous polyposis, in which polyp growth is delayed. In both classic familial adenomatous polyposis and its attenuated variant, benign and malignant tumours are sometimes found in other places in the body, including the duodenum (a section of the small intestine), stomach, bones, skin and other tissues. A milder type of familial adenomatous polyposis, called autosomal recessive familial adenomatous polyposis, has also been identified. People with the autosomal recessive type of this disorder have fewer polyps than those with the classic type. The colonoscopy consents disease diagnosis. The reported incidence of familial adenomatous polyposis varies from 1 in 7,000 to 1 in 22,000 individuals (Genetics Home Reference).
2. Technology, procedure and alternatives

2.1. Technology

Wireless Capsule Endoscopy (WCE) (figure 2.1) is a recent technology primarily designed to provide imaging of the small intestine, an anatomic site that has proved particularly difficult to visualise. Devised by an Israeli engineer, Gavriel Iddan in 1981; 15 years later, the capsule was tested on animals, whilst the first trials on adult humans began in 2001 (see Appendix 2a).

Figure 2.1 Video Capsule Endoscopy

1) optical cupola;
2) lock for the lens;
3) lens;
4) lighting system to LED (Light Emitted Diode);
5) CMOS imager (Complementary Metal Oxide Semiconductor);
6) Batteries;
7) Transmitter ASIC (Application Specific Integrated Circuit);
8) Antenna.

2.2 Procedure

The procedure can be performed in an ambulatory or hospital setting on an outpatient basis. The patient swallows a small capsule after fasting overnight (8-12 hours). The capsule contains a micro-imaging video technology, a light source and a wireless circuit for the acquisition and transmission of images. The system also includes a software that provides localisation of the device during its passage through the intestine. While moving through the gastrointestinal tract, images are captured at the rate of two per second. These images are transmitted to a data recorder worn on a belt outside the patient’s body and approximately eight hours after ingestion, the patient returns to the clinic where images and data are downloaded. The capsule is passed in the patient’s stools within 24-48 hours. It is not reusable.

The WCE procedure involves a high degree of expertise and providers of the service should
be specialists who have undertaken a specific training program. The procedure is not recommended in patients suspected of, or with a history of, intestinal stricture or obstruction, or who carry a cardiac pacemaker or other implanted electronic devices. The main indication for WCE use is the diagnosis of the site of Obscure Gastrointestinal Bleeding (OGIB) in adults. OGIB is defined as bleeding of an unknown origin that persists or recurs after a negative initial endoscopy (colonoscopy and/or upper gastrointestinal endoscopy). The capsule is being used for the diagnosis, assessment of its extent and severity of CD, in the diagnosis of small bowel tumours, in the detection of small bowel injury associated with the use of non-steroidal anti-inflammatory drugs, delineation of the type of abdominal pain and in the assessment of COD.

2.3 The alternatives

The following are the main comparators divided by indication (table 2.1). A brief description of each technology is provided in the text (for a more thorough description see Appendix 2b).

Table 2.1 Principal comparator of WCE

<table>
<thead>
<tr>
<th>Comparator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endoscopic procedures</td>
</tr>
<tr>
<td>Double Balloon Enteroscopy (DBE), Intraoperative Enteroscopy (IE), Push Enteroscopy (PE).</td>
</tr>
<tr>
<td>Imaging procedures</td>
</tr>
<tr>
<td>Angiography, Computer Tomography (CT), Enteroclysis, Magnetic Resonance Imaging (MRI), Small Bowel Series (SBS) - Small Bowel follow through (SBTS)</td>
</tr>
</tbody>
</table>

Double-balloon enteroscopy (DBE)

This is a recent endoscopic technique (2001) that allows the real-time visualisation of the entire gastrointestinal tract. The technique involves the use of a special enteroscope and an overtube (a tube that fits over the endoscope). Silicone inflatable balloons are embedded one on the enteroscope and one on the overtube. The enteroscope is inserted through the mouth and passed in conventional fashion into the small bowel. DBE is also applied through the anal route.

Enteroclysis

Enteroclysis is a minimally invasive radiographic procedure of the small intestine, which requires the introduction of a catheter into the small intestine followed by the injection of barium and methylcellulose. The catheter is passed from the nose or mouth through the stomach and into part of the small bowel and injects the barium which coats the intestine and the methylcellulose which distends the lumen allowing real-time fluoroscopic visualisation of the entire small bowel.
Intraoperative Enteroscopy (IE)

IE (per-orally, trans-nasally, per-rectum, or through single or multiple intestinal incisions) is usually applied in cases of bleeding that has not been localised in spite of extensive diagnostic evaluation and in which the risks of continued bleeding are judged to outweigh the risks of laparotomy.

Standard push enteroscopy (PE)

This standard procedure allows visualisation of the bowel. It requires the oral insertion of a long endoscope and allows examination of the distal duodenum and proximal jejunum. Due to the anatomical features of gastrointestinal tract, this kind of device cannot reach all the parts of the bowel and therefore some “dark areas” cannot be observed.

Angiography

Angiography is the x-ray study of the blood vessels. An angiogram uses a radio opaque medium to highlight the blood vessels in a fluoroscopy suite. Angiography requires the injection of a contrast medium that makes the blood vessels visible to x-rays. The patient’s vascular system is displayed on a monitor in real-time. For examination of the small bowel, the procedure is called mesenteric angiography and involves x-ray exploration of the celiac and mesenteric arteries, the arterial branches that supply blood to the abdomen and digestive system.

Computer Tomography (CT)

Computer Tomography scanning (CT or CAT, Computer Assisted Tomography) is a non-invasive, painless imaging technique. CT uses special x-ray equipment to produce multiple images of the inside of the body and a computer joins them together in cross-sectional views of the area being studied. CT scans of internal organs, bone, soft tissue and blood vessels provide greater clarity than conventional x-ray examinations.

Magnetic Resonance Imaging (MRI)

Unlike conventional x-ray examinations and CT scans, MRI does not depend on radiation. Instead, radio waves are directed at hydrogen atoms, in a strong magnetic field.

Small Bowel Series (SBS) or Small Bowel follow-Through (SBTS)

STS or SBTS is an x-ray examination of the small intestine. This procedure requires that the patient swallows a radio-opaque contrast medium, usually barium sulphate, and then is placed in various positions on the x-ray table while the radiologist uses a fluoroscope connected to a monitor to acquire x-ray images usually every 20 to 30 minutes (this exam often takes 2 hours or more to complete).
3. The marketing status of WCE and current reimbursement arrangements

Two main companies are competing in the worldwide market:

- Given Imaging Ltd, with its PillCam;
- Olympus Corporation, with its EndoCapsule

The latter in 2007 developed a wireless capsule endoscope (EndoCapsule EC type 1) using a different image sensor with electronic enhancement of image quality. In Italy Olympus started-commercialisation of the Endo Capsule in 2007.

The capsule by Given Imaging Ltd has been on the world market since 2001 (M2A capsule), receiving approval from the U.S. Food and Drug Administration (FDA) in August 2001 for use in the United States. As regards the European market, Given Imaging Ltd received approval (CE Mark) by the Regulatory Authorities of the European Union in May 2001. The European directives on biomedical devices have been incorporated into the Italian legislative system. Its main requirements are related mainly to safety and technical performance. In Italy, market introduction of biomedical technologies, is not subordinated to further regulation by any national or regional bodies. However the 2003 financial law (L. 266/2002) foresaw the establishment of a national database of all medical devices available in the Italian market (“Repertorio generale dei dispositivi medici commercializzati”). Therefore the use of biomedical devices such as the WCE is usually started and developed in a bottom up fashion. The WCE capsule by Given Imaging Ltd has been sold in Italy since 2001, and its use is widespread. Data form Given Imaging Ltd, shows that over 3,500 centres from more than 65 countries use WCE (Orecchia G9). Data provided by M.G.Lorenzatto S.p.a., exclusive distributor of the Given Imaging Ltd WCE in Italy, show that in the period 2001 - 2006, 12,451 capsules were purchased, with a yearly increase of 20% from 2005 onwards. WCE is reimbursed as an outpatient procedure in 4 Regions: Piemonte, Basilicata, Sardegna and Valle d’Aosta (Orecchia9).
4. Report’s objectives: policy question and research questions

According to expert opinion, the WCE has been widely distributed and used in Italy since its introduction in 2001. However no data on its use has ever been collected.

Our policy question was: what is the evidence of diagnostic accuracy underpinning the use of WCE and what are its uses and costs in Italy?

Our research question was: what is the scientific evidence of WCE’s diagnostic accuracy compared to other commonly used techniques and what is the evidence of its safety, patients’ acceptability and economic impact in Italy?

The report’s objectives are:

- To retrieve, assess and appraise the available evidence about diagnostic accuracy, safety, cost effectiveness, and patient’s acceptability of WCE for OGIB, Crohn’s Disease, Familiar Polyposis and Celiac Disease.
- To produce context-specific data and information by collecting primary data and information from all the Italian providers of WCE, from patients, physicians and from the Italian Regional health services.
5. Assessing the available evidence

5.1 Methods

We performed a systematic review of the evidence from primary and secondary studies to identify:

a) Health Technology Assessments reports and systematic reviews;

b) Primary studies to update the reports identified in step a);

c) Primary economic evaluations and patients acceptability studies.

5.1.1 Health Technology Assessments reports and systematic reviews

We conducted searches on the database of the “York Centre for Review and Dissemination” (CRD). We selected reports published from January 2001 to July 2007, we chose the online versions in English, and assessed them on the base of quality criteria (see INAHTA and EUnetHTA's checklist for transferability of HTA reports: http://www.inahta.org/HTA/). We identified three reports (from Australia10, Britain11 and Belgium12) for an in-depth analysis of data transferability. No report contained an economic evaluation or a survey of patient acceptability.

5.1.2 Primary studies

We selected the most recent reports to update the Belgian WCE diagnostic efficacy systematic review12. As this had been published in early 2006, we overlapped the searches to June 2005 to minimise the risk of missing studies. On the basis of our own inclusion criteria we selected studies dated before 2005 included in the Belgian report. Searches were conducted on the following databases:

- Medline
- Embase
- Cochrane Library (CL)

Complete details on the strategy criteria and search terms are presented in Appendix 3.

5.1.3 Inclusion criteria

We included comparative studies (excluding editorials, letters, news articles, clinical guidelines, conference papers, interviews, surveys, opinion pieces, anonymous articles and non systematic reviews) on patients with OGIB, Crohn's disease, COD and Familial Polyposis reporting an appropriate outcomes (diagnostic performance, effect on clinical management and/or health outcome, tolerability, efficiency and direct and indirect costs) comparing WCE to different diagnostic
techniques (DBE, Enteroclysis, IE, PE, Angiography, CT, MRI, SBTS). Studies with fewer than 10 participants and those not carried out on humans were excluded.

5.2 Assessing the available evidence: diagnostic accuracy

WCE versus PE diagnostic accuracy in patients with OGIB

Six studies compared the performance of WCE with that of PE in OGIB: Mylonaki et al., Mata et al., Adler DG et al., Neu et al., De Leusse et al. PE does not allow the visualisation of the entire small bowel, therefore it does not seem to be a suitable or fair comparator, nevertheless most of the included studies compared the diagnostic accuracy of PE versus WCE. All patients included in the study had OGIB, and had already undergone upper and lower endoscopic procedures. Among selected studies there was only one randomised trial (De Leusse et al.) published in 2007 (see below), while the other studies show varied and numerous design and reporting limitations, as described below.

Randomised controlled trials

De Leusse et al. is the only randomised trial in our evidence base. Minor shortcomings are related to the generalisability of results due to the low number of patients enrolled (78) and to the clinical characteristics of patients, which seem to be very specific to the French context (for example very high haemoglobin levels at baseline). Reasons for patients lost to follow up are not reported. This trial shows that WCE has a higher diagnostic yield than PE in patients with OGIB. The two strategies tested (WCE or PE first, followed if negative, by the alternative) were not (DY, 95% CI) statistically different in terms of diagnostic yields, clinical remission rate, therapeutic impact, need of alternative exploration during first year. However, the authors conclude that using the WCE first would be the best option, since it is simpler and better tolerated. The diagnostic yield of WCE vs PE for definite sources of bleeding were 17 of 40 patients (43%; 95% CI: 29-59) and 4 of 38 patients (11%; 95% CI: 4-25), respectively for small bowel lesions (P=.02), 3 of 40 patients (8%; 95% CI: 3-20) and 4 of 38 patients (11%; 95% CI: 4-25) for gastric lesions and 0 of 40 patients (0%; 95% CI: 0-7) and 1 of 38 patients (3%; 95% CI: 1-14) for colonic lesions. Performance of WCE for all lesions were: sensitivity 79% (60-86); specificity 87% (67-90); PPV 88% (75-90) and NPV 77% (50-85). For small bowel lesions: sensitivity 100% (61-100); specificity 90% (77-92); PPV 85% (69-88) and NPV 100% (71-100). Performance of PE for all lesions was: sensitivity 41% (30-53); specificity 100% (89-100) and NPV 56% (35-72). For small bowel lesions: sensitivity 33% (21-43); specificity 100% (93-100); PPV 100% (83-100) and NPV 62% (41-75).

Non randomised studies

In Mylonaki et al., Mata et al., Adler et al., Neu et al. all patients enrolled served as their own controls, with PE performed within 3-14 days after WCE (in two studies, Adler et al., Neu et al., the time range is not reported).

Saurin et al. is a “follow up study”, involving 58 patients already enrolled in a previous prospective study (comparing WCE with PE). Patients were contacted after a year. The authors concluded that WCE is a sensitive examination for the detection of small-bowel lesions in patients with
OGIB, with a specificity lower than that of PE and a high negative predictive value, making it a useful first line technique before PE (sensitivity 95% CI) of WCE 0.92 (0.82-1.00) and PE 0.69 (0.53-0.87) - specificity (95% CI) of WCE 0.48 (0.32-0.68) and PE 0.80 (0.54-0.94). PPV of WCE 0.62, and of PE 0.75 - NPV of WCE 0.87 and NPV 0.74).

According to the studies by Mylonaki et al.13, Mata et al.14, Neu et al.17 Adler et al.15, WCE diagnostic accuracy would seem superior to that of PE. Mylonaki et al.13 is based on 52 consecutive patients and report that WCE can provide small intestinal imaging comparable with PE, and can diagnose intestinal bleeding sources at sites beyond the reach of PE: WCEs diagnostic yield in the small bowel was 68% and in total was 76% compared with PE. PE identified a bleeding source in the same location in 32% of patients, while its total diagnostic yield was 38%.

The Mata et al.14 study is based on 42 consecutive patients undergoing WCE first and PE after 1 week. The authors report that WCE increases the diagnostic yield in patients with OGIB and allows modification of the therapy strategy in a remarkable proportion of patients: WCE diagnostic yield: 31/42 (74%) and PE diagnostic yield: 8/42 (19%). Most of the findings detected by WCE were located in the distal jejunum and ileum, probably out of reach of the enteroscope. WCE led to a change in treatment strategy in 7/31 patients (22%). The authors suggest that WCE should be used before PE and after a negative upper and lower conventional endoscopy.

Neu et al.17 is a multicenter prospective study carried out in five German centres and compare the diagnostic yield of WCE to a group of other technologies (OT). Time range and sequence of technologies is not reported, since it varies from centre to centre. The authors underline that the diagnostic yield of WCE vs PE is higher above all in the parts of small bowel not reachable by PE and that WCE tends to visualise and identify many small lesions which were too small to be the cause of bleeding. The report is confusing, with aggregate findings, although tables showing results for each single technology are presented, but not discussed. WCE detected 42% of lesions with low probability of being a bleeding source, and 58% of lesions with a high probability. PE detected 27% of minor lesions and 73% of major lesions.

Adler et al.15 is a study based on 20 consecutive patients undergoing WCE first and then PE (time range not reported). According to the authors WCE affects long term management of patients with clearly seen lesions, but does not affect the management of patients with lesions which are not necessary the source of bleeding). Definitive sources of bleeding in the small bowel were identified by WCE in 6 out of 20 patients (30%) and only two of them were found to have small bowel angioectasias at PE. Five of them underwent targeted endoscopic or surgical therapy based on WCE and PE findings.

WCE and DBE diagnostic accuracy in patients with OGIB

Randomised controlled trials

None were identified
Non randomised studies

Five studies involving patients with OGIB compared WCE versus DBE: Matsumoto et al.19, Hadithi et al.20, Nakamura et al.21, Gay et al.22, Xiao-bo et al.23. DBE is probably a fairer comparator than PE, as the use of two balloons should allow the exploration of the entire small bowel, although this can not be taken for granted due to each patient’s individual variability. Three studies are based on very small numbers. In addition the same patient undergoes both procedures at different times, introducing a strong time bias affecting results. Time between the two interventions is always reported and ranges from 2 to 14 days. In only one study patients undergo DBE first (Matsumoto et al.19) this may be due to the fact that authors aim was to evaluate how much farther WCE travels behind the last part of intestine reached by DBE. All the studies, except Matsumoto’s, seem to reach similar conclusions, indicating WCE as the first option in OGIB cases and DBE as last option given its therapeutic ability and histopathologic capacity.

Matsumoto et al.19 enrolled 22 patients to compare WCE and DBE diagnostic accuracy. The value for diagnosing OGIB is similar in the two procedures for the area reached by DBE. According to the authors DBE appears superior to WCE in the diagnosis of small-intestinal polyps. DBE identified positive findings in 12 patients (54.5%), while WCE identified positive findings in the area explored by DBE in 8 patients (36.4%), and in the unexplored area in 11 patients (50%). Five of them underwent a new DBE. In 2 cases it did not discern the small intestinal pathology suggested by the WCE.

The Hadithi et al.20 study is based on 35 consecutive patients and the authors report that the diagnostic detection rate of WCE is 80% (28/35) and that of DBE 60% (21/35). The authors report that WCE has a higher detection rates than DBE, but also has limits lacking any related therapeutic potential (unlike DBE) and tends to overestimate the density of lesions by also visualising trivial ones (high number of false positive). According to the authors WCE and DBE are complementary: WCE is a good candidate to be the first diagnostic step in approaching selected patients with OGIB, DBE may verify WCE findings and provide therapeutic options. The study by Nakamura et al.21 includes 32 consecutive patients. The authors evaluated the access rate to the entire small intestine of the two procedures. WCE succeeded in accessing the entire intestine in 90.6% of patients (29/32), while DBE in just 62% (10/16 \textit{p}<0.05). The diagnostic rate of WCE is 59.4% (19/32) and for DBE is 42.9% (12/28 \textit{p}=0.30). According to the authors in many suspected small bowel bleeding cases WCE should be selected for the initial diagnosis and DBE for treatment or histopathologic diagnosis after detection of the bleeding site by WCE. However if it is suspected that the bleeding site is located in the distal ileum, DBE may be chosen initially since WCE is unable to reach this due to food residues or battery failure.

The study by Gay et al.22 involves a group of 160 consecutive patients. Half of them underwent just WCE, while 42 had DBE, 87 cases were confirmed as OGIB. The objective of this study was not to compare the diagnostic accuracy of WCE vs that of DBE. The authors assume the diagnostic dominance of WCE on the basis of the evidence provided by previous studies (Saurin et al.16, Ell et al.24) and they conclude that WCE should be used as a filter for DBE.

The study by Xiao-bo et al.23 published in 2007 is large: 218 participants with OGIB, diarrhoea or abdominal pain who had undergone other diagnostic procedures. They were “categorised” into 2 groups undergoing first either WCE or DBE. Patients with negative or equivocal findings on WCE underwent DBE and vice versa. The time range between DBE and WCE was 12.9 days (2-50
days.) As a whole the “categorisation” is not well explained and it is not possible to say if any randomisation occurred. The authors report that the detection rate of small bowel diseases with DBE is relatively lower than that with WCE. The two procedures are complementary but the authors conclude that WCE is a better initial diagnostic approach for suspected small bowel diseases especially for OGIB. With regard to the relatively high non-diagnostic (i.e. unknown pathology causing bleeding) rate (28%) of small bowel diseases and inability to provide diagnostic sampling, DBE still appears to be a viable instrument to complete and/or confirm the negative and non-diagnosis made by WCE.

WCE versus other techniques in patients with OGIB

Randomised controlled trials

None were identified

Non randomised studies

Five studies compared WCE with different diagnostic techniques. One of the studies compared WCE with Intraoperative Enteroscopy (IE), while the other comparisons are all imaging technologies, such as Small bowel barium follow through (SBFT), Computed Tomography (CT), Magnetic Resonance Enteroclysis (MRE), Standard Angiography (ANGIO).

The study by Costamagna et al.25, compares the clinical outcomes of small bowel radiographs (SBFT) with WCE in a prospective study, where 22 consecutive patients with suspected small bowel disease were enrolled and underwent both barium follow-through and the WCE at different times was carried out 4 days before WCE. The endoscopist was blinded to the SBFT results. The authors report that WCE was superior to small bowel radiograph for the evaluation of small bowel disease. For OGIB, the diagnostic potential of barium follow-through was much worse compared with that of WCE (5% vs 31%, \(P<0.05\)). Findings were classified as diagnostic, suspicious or failed (no source of bleeding identified). Barium follow-through was normal in 17 patients and showed ileal nodularity in 3 patients. WCE was normal in 3 patients and showed positive findings in the remaining 17 patients. The barium study was considered diagnostic in 4 (20%) patients, suspicious in 0 and failed in 15 (73%). The capsule endoscopy was considered diagnostic in 9 (45%) patients, suspicious in 8 (40%) patients and failed in 3 (15%) patients.

The study by Hara et al.26 compared WCE findings with barium studies or computed tomography (CT) in 22 patients. This is a retrospective study where 36 patients underwent SBFT, 4 enteroclysis, and 19 CT of abdomen and pelvis. Imaging results were retrospectively reviewed and compared to WCE, standard endoscopy, and surgical results. Findings of any examinations between WCE and imaging that were discrepant were retrospectively reviewed by a radiologist not blinded to WCE results. The proportion of positive WCE findings was compared with the proportion of positive findings from barium studies and CT in the same patients. In patients without a small-bowel stricture in the barium study, more small-bowel diseases were found with WCE when findings were retrospectively compared with barium examination and CT findings. Barium examina-
tion findings were positive in one (3%) of 40 patients; WCE findings were positive in 22 (55%) (P<0.001). CT demonstrated small-bowel findings in four (21%) of 19 patients, but WCE demonstrated findings in 12 (63%) of 19 patients (P=0.02). The most common WCE findings (11 cases of angioectasia), were not detected at any imaging study. More ulcers (n=8) were detected with WCE than with barium study (one of eight) and CT (three of six). At WCE, three of five surgically confirmed masses (carcinoid, intussusceptions, lymphangioma) were identified, but two jejunal tumours were not detected in a patient with poor bowel preparation. Barium studies detected no masses (zero of five), CT detected one of four masses.

The study by Golder et al.27 assessed the diagnostic yield of WCE compared with that of MR enteroclysis in the detection of small bowel pathologies. This is a prospective study involving 36 consecutive patients, of whom 14 had OGIB and it is focused mainly on CD patients. Although in general, the diagnostic yield of WCE was different on each part of the small bowel the authors conclude that MRE had no diagnostic benefit in patients with OGIB versus WCE, which is clearly superior to MRE.

The study by Saperas et al.28 compared the diagnostic yield of WCE with that of Computed Tomography (CT) or Standard Angiography (ANGIO) in patients with OGIB. Twenty eight patients underwent WCE within 7 days of imaging. A source of bleeding was detected by WCE in 72% patients (18/25), by CTA in 24% of patients (6/25), by ANGIO in 56% patients (14/25). In this study WCE detected more lesions than CTA or ANGIO in patients with OGIB.

Hartman et al.29, compared the diagnostic yield of WCE with that of Intraoperative Enteroscopy (IE), which could be considered the only proper comparator. The study involved 46 patients that underwent IE 6 days after having WCE. The authors report that the diagnostic yield of WCE is different according to the kind of OGIB. In overt ongoing bleeding a diagnosis was made in 100% of patients (11/11), in overt previous bleeding 67% (16/24) of patients had a lesion detected by WCE and in cases of occult bleeding, WCE found a lesion in the same percentage of patients 67% (8/12). IE performed similarly in overt ongoing bleeding (100%, 11/11), better than WCE in overt previous bleeding 70.8% (17/24) and in occult bleeding 50.0% (6/12). The authors report that WCE performs better in occult bleeding cases.

WCE versus other techniques in patients with CD

Randomised controlled trials

None were identified

Non randomised studies

Seven studies were carried out in patients with CD: Albert et al.30, Buchman et al.31, Eliakim et al.32, Ho Chong et al.33, Golder et al.27, Gay et al.22, Voderholzer et al.34. In those studies WCE is compared to different imaging diagnostic procedures: SBFT (2 studies), CT (1), MRI (2). Gay et al.22 (14 out of 160 enrolled patients had CD) compared WCE to both endoscopic and imaging procedures (PE and Enteroclysis). The first group of studies assessing WCE compared with visual
techniques, appear to show a similar sensitivity for WCE (except Eliakim et al.32), but there is a strong attrition bias in the studies with almost 10-15\% of patients lost to follow up or for whom WCE is contraindicated due to strictures in the small bowel which were detected previously with the comparator (Appendix 4).

Albert et al.30 report a prospective blinded study comparing WCE with MRI on 52 consecutive patients with suspected recurrence of CD. They were enrolled on the basis of abdominal pain, diarrhoea, anaemia, and/or arthralgias. Results showed that WCE and MRI are complementary techniques having very similar sensitivity in both suspected and diagnosed CD. Buchman et al.31 involved 30 patients with clinical suspected CD recurrence and compared WCE to SBFT. The authors report that that WCE and SBFT have similar sensitivity and accuracy for the diagnosis of CD. The study by Eliakim et al.32 involved 35 consecutive patients with suspected CD and the authors report that WCE is a more sensitive diagnostic tool than SBFT and entero-CT in the target population. The study by Ho Chong33 compares WCE with PE and Enteroclysis. The authors report that WCE has a higher yield than the other two procedures in patient with suspected CD. The study by Gay et al.22 involves a group of 160 consecutive patients. Fourteen of them had CD. The objective of this study was not to compare the WCE diagnostic accuracy versus that of the DBE. The superiority of WCE is assumed by the authors also for CD on the basis of the evidence provided by previous studies. The authors report that WCE should be used as a filter for DBE. Voderholzer et al.'s34 prospective study involved 56 patients (of whom 14 were excluded due to strictures detected with CT). The study compared WCE to CT enteroclysis and the authors report that WCE improves the diagnosis of small bowel CD and changes patient’s therapeutic plan.

WCE versus other techniques in patients with FAP

Randomised controlled trials

None were identified

Non randomised studies

Three prospective studies assess the performance of WCE in FAP: Caspari et al.35, Schulman et al.36 and Wong et al.37. Comparators were PE (2 studies) and MRI (1). The total numbers of patients involved in the three studies were 92. The authors report that WCE tends to have problems in detecting large polyps, while it can overestimate the number of polyps, having a high sensitivity (Appendix 4).

Systematic reviews and meta analyses

In Marmo et al.38 the studies were examined with respect to the following criteria: study design; inclusion and exclusion criteria; patient characteristics; technical detail of CE and other diagnostic procedures; definition of study outcomes and their monitoring methods. Information on objective quality-related characteristics was also collected and the quality of the studies included was assessed using 17 of the 22 items of the CONSORT statement (Altman et al.39). Results from the trial reports were reproduced where possible. The systematic review was performed according to the QUOROM statement (Mother et al.40).
Marmo et al.38 report that WCE proved significantly superior to PE and small bowel radiology in the diagnosis of ileal disease. Patients evaluated were 526 (289 assigned to WCE for OGIB, 237 assigned for known or suspected CD). The rate difference between WCE and alternative techniques for small bowel disease was: 41\% (95\% CI 35.6-45.9); 37\% (95\% CI 29.6-44.1) for OGIB; and 45\% (95\% CI 30.9-58) for CD. Failure to visualise the caecum occurred in 13\%, significantly more often in occult bleeders (17\%) than in patients with CD (8\%) (P<0.006).

In Triester et al.41 the studies were examined for prospective trials comparing WCE to one or more alternate modalities for evaluation of the small intestine in patients with suspected or established CD using the MEDLINE, EMBASE and Cochrane Central Trials databases.

The review by Triester et al.41, included only studies assessing WCE for the diagnosis of CD. The authors report that WCE is better than all other considered techniques for the diagnosis of non stricturing small bowel CD, with a number needed to test NNT of 3 to yield one additional diagnosis of CD over small bowel barium radiography and a NNT of 7 over colonoscopy with ileoscopy. Nine studies (N=250) reported the yield for WCE versus BR equal to 40\%. Four studies (N=114) report that the yield for WCE versus colonoscopy with ileoscopy was 61\% e 46\%. Three studies (n=93) assessing WCE vs CT enterography showed 69\% and 30\% diagnosed patients respectively.

5.3 Assessing the available evidence: safety of WCE

In the identified studies the issue of safety is not always reported and when present, is not dealt with in a systematic manner: 21 out of 27 studies describe events related to safety events.

We analysed the information reported in the studies by categorising it into two major groups: Adverse Events (AE) and Technical Problems (TP). The events within the first category are directly related to the patient’s safety, while TPs are indirectly related. Those events can cause repetition of a procedure which has an impact on the patient’s safety as they undergo another procedure, increasing their overall chance of having an AE. The AE category can be further divided into four types of events on the basis of their severity: None, Self Resolving Symptoms (SR), e.g. problems in swallowing capsule, problems in passing the stomach, Therapy (T), e.g. retention of capsule for more than 1 day but not requiring invasive interventions, Surgery/Intervention (SI), e.g. retention of capsule requiring intervention with PE or surgical, and Mortality (M). The TP category can be divided into two types: the Battery Failure (BF) and Battery expiry (BE). In the first case it is a technical problem due to the technology itself, while in the second case the WCE battery can end up by running out before reaching the small bowel, this being related to the specific characteristics of the patients.

In OGIB the five studies comparing WCE with DBE (Matsumoto et al.19, Hadithi et al.20, Nakamura et al.21, Gay et al.22, Xiao-bo et al.23) report safety information, although in Gay et al.22 was limited to a one-line sentence stating that both procedures had no “major complications”. WCE had no complications in 3 out of 5 studies, and DBE in 2 out of 5. All events reported about DBE are SR: Hadithi et al.20 describe abdominal pain in 29\% patients, while in 2 patients the procedure had to be interrupted (3\%); Nakamura et al.21 report that 1 patient refused DBE (3\%), while Xiao-bo et al.22 state that 18\% of patients reported discomfort after DBE. Complications reported for WCE were almost all self resolving, but some did require surgery, and were related to the expiry of the battery. In the study by Xiao-bo et al.23 involving 218 patients, 0.5\% had the capsule detained in the lower oesophagus and one of them interrupted the examination. In 2\%
of patients the capsule was retained, and 2 patients underwent surgical removal. 19% patient’s capsule battery expired before reaching the caecum. Three of the 4 studies comparing WCE and PE (Mylonaki et al.13, Mata et al.14, Adler et al.15) provide information about safety. PE did not have any complication, while WCE had both different types of adverse events, such as self resolving and surgical interventions, and technical problems. Mylonaki et al.13 describe that in 1 out of 50 patients the WCE remained in the oesophagus for 7 hours and was pushed in the stomach by an endoscope. In 7 patients the capsule passed into the pylorus and returned to the stomach (in one patient this occurred 7 times), while Mata et al.14 report that 1 patient retained asymptotically WCE for 48 days (natural expulsion) and in 1 patients it was removed by laparoscopy. Mylonaki et al.13 describe the battery running out in 16 patients (28%), while in 3 patients there was a loss of images due to temporary electrical disconnection. In 1 patient the battery expired after 2 hours. Mata et al.14 in 3 patients (7%) illustrate that WCE did not reach the ileocecal valve by the end of the recording time.

Costamagna et al.25 Golder et al.27 and Hartman et al.29 report just 1 case (5%) of battery failure (Costamagna et al.25) and 1 case of malfunctioning (3%) of the capsule (Golder27), while Hartmann29, comparing WCE versus Intraoperative endoscopy reports 1 mortality case for IE. Percentages and data for the two main categories of complications in all the studies about OGIB patients are summarised in Tab. 5.1. (see Appendix 5, for a detailed analysis of each category of complications and type of problems in each study).

Table. 5.1 Complications with WCE in OGIB patients

<table>
<thead>
<tr>
<th>Nº of patients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical problems</td>
<td>80</td>
</tr>
<tr>
<td>Adverse events</td>
<td>23</td>
</tr>
<tr>
<td>Total OGIB patients</td>
<td>863</td>
</tr>
</tbody>
</table>

In CD studies adverse events occurred on average in 2% of patients (Appendix 4). In an average of 2.5% of cases the capsule battery expired (Golder et al.27; Voderholzer et al.34), while Ho Chong33 reports that the capsule failed in 29% of patients. For CD studies we had to introduce a further variable while synthesising data on safety, otherwise the incidence of capsule retentions could have been underestimated. In most of the studies testing the diagnostic accuracy of WCE in detecting CD lesions, patients often undergo RX first, which is also a means of selecting patients with no intestinal strictures (a widespread characteristic of CD disease) and enrolling them in the study as eligible to WCE. As a result 10% of the CD patients cannot undergo the WCE procedure as retention problems might occur (see tab. 5.2).

Table 5.2 Complications with WCE in CD patients

<table>
<thead>
<tr>
<th>Nº of patients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical problems</td>
<td>2</td>
</tr>
<tr>
<td>Adverse events</td>
<td>6</td>
</tr>
<tr>
<td>Nº patients not eligible for strictures detected before WCE</td>
<td>29</td>
</tr>
<tr>
<td>Total eligible CD patients</td>
<td>281</td>
</tr>
</tbody>
</table>

For FAP, just two of the three studies reported data on safety. In Wong et al.37, 8 patients retained the capsule which was later removed, and in Schulmann al.36, the battery expired in 1
case and the capsule was retained by two patients. AD occurred in 9% of cases and technical problems just in 1%.

Table 5.3 Complications with WCE in FAP patients

<table>
<thead>
<tr>
<th></th>
<th>N° of patients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical problems</td>
<td>1</td>
<td>1%</td>
</tr>
<tr>
<td>Adverse events</td>
<td>8</td>
<td>9%</td>
</tr>
<tr>
<td>Total OGIB patients</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

The studies selected for our review involved a total of 1236 patients: adverse events with WCE occurred in the 3% of cases and technical problems in 7%.

These data from literature must be compared with the primary data collected in our national survey involving a number of patients which is almost double (see Par. 6.1.2). In our research WCE procedure caused harms in 1% of cases, while in the 15% of patients WCE failed for different reasons: in 202 patients the battery failed and in 272 the WCE expired (see Ch. 6, Figure 6.12). Due to these differences between secondary and primary data (whose “power” is supposed to be higher given the number of participating patients) it is possible that a plausible estimation of the real percentage of TP and AE is respectively 1.5% and 12%. Technical problems do not seem to be related to the use of a mark 1 WCE: data of our survey refers to 2006, and in the reviewed studies the year of publication does not seem to affect safety results by decreasing in the number of complications in most recent studies1 (see Appendix 5).

Table 5.4 Complications with WCE in all patients

<table>
<thead>
<tr>
<th></th>
<th>N° of patients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical problems</td>
<td>82</td>
<td>7%</td>
</tr>
<tr>
<td>Adverse events</td>
<td>37</td>
<td>3%</td>
</tr>
<tr>
<td>Total patients</td>
<td>1236</td>
<td></td>
</tr>
</tbody>
</table>

5.4 Assessing the available evidence: Systematic reviews and meta analyses

Marmo et al.38 highlights that failure to visualise the caecum occurs 13% significantly more often in occult bleeders (17%) than in patients with CD (8%) (P<0.006). Authors point out that adverse events were recorded in 29 patients (6%). Capsule retention was more frequent in patients with CD (3% vs 1% OR 4.37). Triester et al.41 for OGIB report that the risk of capsule retention is 0, 75% in the considered studies, while for CD it is higher.

1We consider the year to which the data refer and the year of publication of the study as proxies of new version /improved equipment in use.
5.5 Assessing the available evidence: WCE acceptability to patients

Some of the selected studies dealt with the acceptability and tolerability aspects, although few of them did it in a systematic and structured way, e.g. by using questionnaires and explaining the methodology used to collect data from patients. For instance, short passages are dedicated to this issue in many of the assessed articles, but authors tend to take it for granted that patients prefer WCE over any other endoscopic procedures. This means that usually no good evidence is collected in support of this statement, by either qualitative or quantitative methods. We did not consider citations and statements of this kind in our analysis unless supported by evidence. Out of 27 studies, only 3 reported information and data in a more or less systematic manner: Mylonaki et al.13, Hadithi et al.20 and Buchaman et al.31.

The first three studies compared WCE to procedures considered “more invasive”, while the last one compared it to SBFT, which is an imaging technology supposed to be less invasive. The methods used, although described, are not always well explained: they range from multiple choice questionnaire filled by patients, or views collected by physician’s interviews with patients. No table summing up data and number of respondents is provided and data are reported in a discursive manner in most of cases. The studies by Hadithi et al.20 and Buchaman et al.31 do not consider a comprehensive range of dimensions that may define acceptability, focusing above all on pain or swallowing difficulties. All of them report that WCE was preferred to the other procedures.

In the study by Mylonaki et al.13, patients were interviewed at follow up and asked to compare WCE and PE painfulness and state their preference: 49/50 preferred WCE over PE, while just 2 patients found it difficult to swallow. PE was painful for 34/50 (p<0.05). Hadithi et al.20 used questionnaires to gather information on tolerability, administrating them during follow up. Questions were about discomfort and other problems related to procedure: DBE resulted to be less tolerated than WCE (40% vs 94%, p<0.001).

5.6 Results

The systematic review of this report is based on 27 studies. Seventeen of them were published after the Belgian report12 and date from 2005 to 2007. A total of 349 primary studies were identified by the search, of which 17 met our criteria. The chart in Figure 5.1 summarises the flow of studies in the review. A complete list of the studies identified in the literature search and excluded is at Appendix 6. In addition we selected 10 studies published before 2005 from the KCE report12 by applying our inclusion criteria, and we re-assessed them.

Among the selected literature we could not find any study dealing with costs or economic evaluations. Two studies were supposedly meta analyses. One is from Marmo et al.38, and is about WCE and different comparators used for OGIB and Crohn’s Disease (CD), while the other is from Triester et al.31. The authors assessed the evidence comparing WCE with various technologies and for the diagnosis of non stricturing small bowel CD (Appendix 4).

We could identify only one randomised trial out of the 27 assessed studies. Almost all primary studies, no matter the indication and/or comparator, were found to have an unusual study design. This kind of design is simply called by authors “prospective” or “blinded and prospective” when physicians performing the alternative are blinded to the WCE’s results. A rather small num-
ber of consecutive patients are enrolled and serve as their own controls. This means that they undergo both WCE and then comparator (or vice versa) after a certain range of time: in 7 studies the range was not reported, in 6 it went form 1-6 days, and in 9 from 7 to 14 days, while in two studies the time range between one procedure and the other was more than 15 days (Figure 5.2).

This design has two major linked biases. One due to the absence of randomisation and the other related to the time range in the various studies. The lesions causing OGIB, in many cases, may vary and change in a few days. The most frequent reason for OGIB is angiodyplasia (Lewis4) which, by its very nature, undergoes very rapid morphological changes (Norman43). This implies that the results of the final studies are not fully reliable due to the too long or even not declared time range between one procedure and the other. In conclusion the studies compared the incomparable.

Figure 5.1 Flow Chart A total of 349 primary studies were identified by the search, of which 17 met the criteria for the comparative assessment of the effectiveness/efficacy and safety.
Figure 5.2 Time range (days) in the eligible twenty-four primary studies.

Given the absence of randomised trials and the peculiarities of the chosen design, we tried to understand reasons for design and comparator asking the authors directly, by sending them a formal e-mail with some questions. We received 7 answers (out of 18 authors contacted) from which we understood that choosing the same group of patient was seen as the best option guaranteeing comparability of results. The confounding variable related to the morphological change of many potential sources of bleeding was usually underestimated or ignored. In addition no motivation was provided about not choosing to randomise patients into two groups undergoing different diagnostic procedures (see Appendix 7).

In the preceding sections we described shortcomings, characteristics and results of each study by dividing and grouping them according to the disease/s they referred to and to the comparator. For each study we focus on three main dimensions and related outcomes: diagnostic accuracy, safety and patient’s acceptability of WCE and comparator. The two systematic reviews are described and assessed in a separate paragraph.

However findings and subsequent conclusions from the selected literature about WCE and its diagnostic accuracy, safety etc. have to be regarded as uncertain, as these results are based on low quality evidence. The only reliable results are those from the RCT by De Leusse et al.18.
6. Collecting context specific data

The collection of context specific data was important to gain a complete picture of the diffusion and use of the WCE, its costs, appropriateness of use and patient's tolerability in Italy. In our country WCE was introduced in the market with no governance at regional or national level in 2001 and according to experts it is being used in many centres.

We carried out two surveys. The first was aimed at collecting data on the actual diffusion of WCE in the year 2006, its direct costs and appropriateness of its use from Italian centres delivering WCE; the second was about patient satisfaction with WCE compared to other endoscopic interventions, and involved 5 centres, chosen amongst those which completed the first survey's questionnaires, on the basis of the highest use of WCEs per year. The following sections provide a detailed description of materials, methods and main results for each of the two surveys.

6.1 Appropriateness of WCE use and related costs in the Italian context

6.1.1 Objective, materials and methods

The aim of the survey was to collect primary information and data on the diffusion of WCE (2006), appropriateness of WCE use and on costs to generate an economic impact scenario for the use of the technology.

We identified all Italian centres that could potentially provide WCE, to obtain a comprehensive population denominator for the survey. Due to Italian informative system shortcomings this was not an easy task and the merging of three different databases and sources of information was necessary. Our final denominator was 116 Italian centres providing WCE diagnostics in 2006 (Lorenzatto s.p.a. data). This inclusive list was drawn from three sources:

a) Ministry of Health Database (gastroenterology and endoscopy centres)
b) Italian Club of Wireless Capsule Endoscopy (CICE)
c) Data from the Italian distributor M.G. Lorenzatto S.p.a..

A structured questionnaire was sent by post to all the 116 physicians identified as responsible of the various endoscopic and gastroenterology centres providing WCE. The collection of data lasted from December 2007 to April 2008.

Responding centres (Appendix 8) were 48% of the total (56/116 filled questionnaires returned). The questionnaire aimed at gathering information on three areas: characteristics of the centre, clinical information about patients undergoing WCE, costs of WCE procedure in terms of human resources, device and equipment and consumption material (Appendix 9).
6.1.2 Results

Characteristics of responding centres

Among the 56 responding centres delivering WCE, the majority were public: 51 were public structures (91%, 46 public hospitals, 2 university hospitals, 2 research hospitals-IRCSS), while only 4 were private accredited providers (2 hospital trusts, 1 university hospital, 1 residential hospital) with a contractual agreement (7%) and 1 was a completely private centre (Figure 6.1). Accredited centres with contractual agreement can provide services on behalf of the public health service, and are reimbursed. Completely private centres provide services which are paid directly by patients or private insurance. The majority of responding centres (32, 57%) were located in Northern Italy, 8 were from Central Italy (14%), while 16 (29%) were from Southern Italy and Islands.

Figure 6.1 Type of centres delivering WCE (year 2006)

Comparing the data provided by the only Italian distributor of WCE in 2006, with the data obtained from the survey, we can see that the highest number of centres providing WCE is in Lombardy (22 centres) of which 9 (41%) answered to the questionnaire (Figure 6.2), while none of the centres of Basilicata (3 centres), Umbria (2 centres) and Trentino Alto Adige (2 centres) replied to the questionnaire. At regional level responsiveness was 58%.
Figure 6.2 regional distributions of centres

The data provided by M.G. Lorenzatto S.p.a./Given Imaging Ltd show that the highest number of WCE sold per 100,000 population is in the Liguria and Marche Regions, where 13 capsules every 100,000 population were used. More than 10 capsules per 100,000 population were used in Emilia Romagna and Piemonte (10 and 11 WCE/100,000 respectively). The Region with the smallest number of WCE per 100,000 population is the Calabria region with 1/100,000 population (Figure 6.3). Comparing these data with data obtained from the survey highlights the fact that in some cases the total number of WCE purchased in 2006 was higher than the total of WCE examinations performed in same year.

Figure 6.3 Regional distribution of WCE per 100,000 population and WCE/100,000 inhabitant for volume of sales - year 2006

Source: age.na.s and M.G. Lorenzatto S.p.a., 2006
Clinical information

The 56 responding centres performed a total number of 2,457 WCE procedures (63% of the total number of WCEs sold by the Italian distributor in 2006). A WCE procedure can be performed on inpatients, outpatients or in a day hospital basis. Data from the survey show that on a total of 2,447 WCE performed in Italy, 43% involved admission to hospital of the patient (length of stay > 1 day), while 31% were performed in ambulatory care and 26% in day hospital (Table 6.1).

Table 6.1 Number of WCE by level of care

<table>
<thead>
<tr>
<th>Levels of care</th>
<th>Inpatient/hospital</th>
<th>Outpatient/ambulatory</th>
<th>Day Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total WCE/2006</td>
<td>2447*</td>
<td>43%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Key: * missing data on 8 WCE
Source: data from responding centres analysed by age

Responding Northern Regions tended to perform this diagnostic procedure more in ambulatory care (46%), although the difference is not large (Fig 6.4). Central Regions use more day hospital (45%) and inpatient care (44%), while just 11% of the responding centres in those regions performed WCE in ambulatory care. In the responding centres from the South and Islands inpatient care is prevalent (60%), followed by day hospital (38%) and inpatient care (3%).

Figure 6.4 Levels of care and geographical distribution of diagnostic procedure per year (2006)

Source: data from responding centres analysed by age

The 57% of patients undergoing WCE in the responding centres were older than 50 (1,391; 57%), 30% (734) were aged 30-50 years and 14% were less than 30 years old (Figure 6.5).
Patient's diagnostic work up was reported by 93% of centres (52/56). The main exams performed before WCE were: colonoscopy, performed by 79% of patients, Esophagastroduodenoscopy - EGDS (63%), followed by Faecal Occult Blood Test - FOBT (22%), Ileoscopy (20%), RX of small intestine (19%), and Other (5%; Abdominal CT, Abdominal MR, Scintigraphy, PET, etc.), jejunoscopy (5%) and Arteriography (4%). Patients underwent an average of 2 diagnostic examinations before WCE (Figure 6.6).
In the three geographical areas, the diagnostic tests performed prior to WCE are similar, however in the central Regions’ centres FOBT is less common (0.7%), compared to its average use (10%) (Figure 6.7).

Figure 6.7 Diagnostic Test workup prior to WCE by geographical location (n=2374 WCE; n=5300 DT)

![Figure 6.7: Diagnostic Test workup prior to WCE by geographical location](image)

Source: data from responding centres analysed by age.na.s

Figure 6.8 Indications for WCE use (n=2504)

![Figure 6.8: Indications for WCE use](image)

Source: data from responding centres analysed by age.na.s
The most frequent indication to undertake WCE was a positive FOBT (45%) and in 11% a negative FOBT, while 12% of patients had a suspected or diagnosed (7%) IBD. In 4% of patients the indication was FAP. Angiodysplasia, which is the mostly frequently detected pathology by WCE (see results below) was the indication in only 3% of patients (Figure 6.8).

The distribution of indications to undertake a WCE diagnostic test, in the three geographical areas, shows no relevant differences. (Figure 6.9)

Figure 6.9 Reasons to carry out WCE by geographical location (n=2504)

![Graph showing distribution of indications by geographical location](image)

Source: data from responding centres analysed by age

All 56 responding centres reported diagnoses made by WCE (Figure 6.10). The most frequent were angiodysplasia (39.7%) (751 patients) and Inflammatory Bowel Disease (IBD, 366 patients, 18%).
Figure 6.10 Main pathologies identified with WCE (n=1900)

Source: data from responding centres analysed by age.na.s

The geographical distribution (divided into North, Centre, South and Islands, see Figure 6.11) shows consistency for the most frequently diagnosed pathologies (Angiodysplasia, Polyposis, IBD, Distal jejunum, Lipoma and Duodenal ulcer) when compared to the National situation. However, diagnosis of CDO is more prevalent in the Centre of Italy (14% of diagnosis compared with 4.5% of the North and the 4% of the South and Islands), the same goes for NSAIDs with a prevalence in the Centre of 8.21% compared with 3.8% in the North and the 3.5% in the South and Islands. Finally, the diagnosis of gastric bleeding is more frequent in central Italy (8.5%) and in the North (6.5%) in comparison to the South and Islands (1.4%).

Figure 6.11 Principal pathology identified with WCE by geographical location (n=1900) year 2006

Source: data from responding centres analysed by age.na.s
The WCE procedure caused harms in 1% of cases (17 patients): 9 patients retained the capsule, 6 had an intestinal occlusion and 2 a delayed clearance and sub-occlusion. In 375 (15%) of patients the WCE procedure failed for various reasons: in 202 patients the battery failed and in 272 the WCE expired. Three percent of patients had to repeat the exam for inadequate preparation (Figure 6.12).

Figure 6.12 Incomplete/inadequate preparation for WCE procedure in Italy (n=375) year 2006

![Bar chart showing incomplete/inadequate preparation for WCE procedure in Italy.](#)

Source: data from responding centres analysed by age.na.s

Intervention after WCE

Ninety one percent of responding centres (51/56) answered the open questions which were based on the most frequent clinical decisions following a WCE test (Table 6.3). In most cases respondents reported medical therapy (including for IBD), and surgical intervention as the two most frequent types of intervention.
Costs related to the use of the WCE

Health personnel and average time per WCE procedure

Responding centres were asked to indicate the average time (in minutes) spent by four types of hospital personnel: physicians, nurses, support operators, administrative officers. Procedures were divided into three phases, and we asked how much time each figure spent in each phase.

- Preparation: the time for the preparation of the patient (wearing of the recording belt, WCE swallowing, etc.);
- Medical reporting: scanning and analysis of the acquired images and diagnosis;
- Consultation: time spent in meeting the patient and discussing procedure and diagnosis.

Almost all the responding centres (53/56, 94.5%) returned data on average time spent by the different actors on a standard WCE procedure (Table 6.4). The distribution of reported time values are reported as the mean time spent, its 95% confidence interval (CI), the minimum, the maximum and the mode as calculated from data returned from responding centres.
For a standard WCE procedure, the mean time spent by the physician was estimated at around 166 minutes (22 minutes for WCE preparation; 123 minutes for medical reporting; 21 minutes for meeting the patient). Considering the mode values, a standard WCE procedure takes a total of 120 minutes (15 minutes for preparation; 90 minutes for medical reporting; 15 minutes for patient meeting).

The average time for a nurse was estimated at 39 minutes (26 minutes for preparation; 13 minutes for meeting the patient). In only one of the responding centres the nurse collaborated in medical reporting for an average time of 20 minutes. The mode was estimated as 30-35 minutes (20 minutes for preparation; 10-15 minutes for meeting the patient).

An administrative officer is involved in preparation for an average time of 10 minutes but few centres report that this professional figure is further involved in medical reporting (mean time of 7 minutes) and patient meeting (mean time of 4 minutes).

<table>
<thead>
<tr>
<th></th>
<th>Preparation</th>
<th>Medical Reporting</th>
<th>Patient Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>22</td>
<td>123</td>
<td>21</td>
</tr>
<tr>
<td>CI (95%)</td>
<td>(19-25)</td>
<td>(108-138)</td>
<td>(18-24)</td>
</tr>
<tr>
<td>min-max</td>
<td>(10-45)</td>
<td>(45-240)</td>
<td>(10-45)</td>
</tr>
<tr>
<td>Mode</td>
<td>15</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>Nurse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>26</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>CI (95%)</td>
<td>(22-30)</td>
<td></td>
<td>(8-17)</td>
</tr>
<tr>
<td>min-max</td>
<td>(15-45)</td>
<td>20</td>
<td>(10-15)</td>
</tr>
<tr>
<td>Mode</td>
<td>20</td>
<td>20</td>
<td>(10-15)</td>
</tr>
<tr>
<td>Support operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI (95%)</td>
<td>(6-14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>min-max</td>
<td>(5-20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrative officer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>10</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>CI (95%)</td>
<td>(7-12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>min-max</td>
<td>(3-20)</td>
<td>(3-10)</td>
<td>(2-5)</td>
</tr>
<tr>
<td>Mode</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: A support operator is solely involved in preparation for an average time of 10 minutes.
Source: data from responding centres analysed by age.na.s.
We performed further analysis on the average time that the physician spends for the scanning/analysis/examination of the acquired images. The number of WCEs performed in one year in the responding department has been considered as the relevant parameter (Table 6.5). We grouped centres as:

- Centres performing up to 30 WCE procedures per year;
- Centres performing between 30 and 60 WCE procedures per year;
- Centres performing 60 or more WCE procedures per year.

The data shows less time spent in medical reporting in those centres performing a high rate of WCE procedures per year.

Table 6.5 Average time for medical reporting stratified by the number of WCE procedures performed per year

<table>
<thead>
<tr>
<th>Physician</th>
<th><30 WCE</th>
<th>30-60 WCE</th>
<th>>60 WCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>127</td>
<td>85</td>
<td>82</td>
</tr>
<tr>
<td>Mode</td>
<td>120</td>
<td>90</td>
<td>60</td>
</tr>
</tbody>
</table>

Source: data from responding centres analysed by age.na.s.

Disposables

During the observation period (2006) all of the 56 responding centres used the Given Imaging Ltd WCE supplied by Lorenzatto s.p.a. Since the capsule cannot be reused after the procedure, it was considered a disposable item. Some of the responding centres (12/56, 21%) used the patency-test capsule prior to the WCE. This device is used to identify strictures prior to the introduction of the WCE (see Appendix 2a for technical details). Disposables used are reported in Table 5 and 6 and were: gauzes, gloves, disposable sheets, razors, disinfectants, prokinetic drugs, water (0.5 litres), photographic paper, A4 paper, printer cartridges and printer toner (Table 6.6).

Table 6.6 Disposables used for one WCE procedure

<table>
<thead>
<tr>
<th>N. of centres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless capsule for endoscopy</td>
</tr>
<tr>
<td>Patency-test capsule</td>
</tr>
<tr>
<td>Gauzes</td>
</tr>
<tr>
<td>Gloves</td>
</tr>
<tr>
<td>Disinfectants: Alcohol, detergent soap, Clorhexidine, Citrosil</td>
</tr>
<tr>
<td>Disposable sheets</td>
</tr>
<tr>
<td>Prokinetic drugs: Metoclopramide, Plasil, Dimeticone, Simiticone</td>
</tr>
<tr>
<td>Valium</td>
</tr>
<tr>
<td>Razor</td>
</tr>
<tr>
<td>Glass and water 0.5 litres</td>
</tr>
</tbody>
</table>

Source: data from responding centres analysed by age.na.s.
Table 6.7 Other items used for one WCE procedure

<table>
<thead>
<tr>
<th>Item</th>
<th>N. of centres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toner</td>
<td>14</td>
</tr>
<tr>
<td>Printer cartridge</td>
<td>36</td>
</tr>
<tr>
<td>Photographic paper</td>
<td>20</td>
</tr>
<tr>
<td>Paper (A4 format)</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: data from responding centres analysed by age.na.s.

Equipment

Thirty four of the 56 responding centres (61%) returned data about the equipment required for WCE procedures purchased in the period between 2000 and 2006. All the equipment was supplied by Lorenzatto s.p.a. Different methods of acquisition have been identified: purchasing (25 centres), service and commodatum (6 centres), donation (3 centres) (Table 6.13).

The questionnaire (Appendix 9) allows data reporting of equipment used in aggregate (hardware and software) or as a single element form (hardware and software separately). Data are shown in Table 7.

The majority of centres (34/56, 61%) returned equipment data in an aggregate form. Every acquisition procedure differed in relation to the configuration selected, i.e., basic configuration (Table 6.8) or customised configuration (Table 6.9) with optional equipment.

Figure 6.13 Method of acquisition of WCE equipment

Source: data from responding centres analysed by age.na.s.
Table 6.8 Equipment used in a single WCE

<table>
<thead>
<tr>
<th>Hardware+software</th>
<th>N. of centres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>3</td>
</tr>
<tr>
<td>Monitor</td>
<td>4</td>
</tr>
<tr>
<td>Computer</td>
<td>5</td>
</tr>
<tr>
<td>Equipment trolley</td>
<td>4</td>
</tr>
</tbody>
</table>

Other equipment:

Software update	3
Battery	1
Imaging Equipment	4

Source: data from responding centres analysed by age.na.s.

Table 6.9 Standard equipment WCE Given Imaging Ltd (2008)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Standard Equipment WCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data recording system for WCE (recording data DR2C with battery, recording belt, 1 battery charger, 1 recording sensor SB, 1 recording sensor ESO, briefcase, 2 tables of instructions)</td>
</tr>
<tr>
<td>1</td>
<td>Processing unit Pillcam capsule SB-ESO-COLON (Computer, monitor lcd 20, software rapid 5.2, colour printing, accessory).</td>
</tr>
</tbody>
</table>

Data from M.G. Lorenzatto S.p.a.
Table 6.10 Optional Equipment WCE Given Imaging Ltd (2008)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Optional equipment WCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real time micro read (support for verification of the functionality capsule before the beginning of the examination and for the verification that the WCE transits over the stomach)</td>
</tr>
<tr>
<td>1</td>
<td>Software rapid reader (used for viewing and to see the videotaped video rapid 5.1 again on personal computer and to manage an WCE from peripheral unit Given Imaging Ltd)</td>
</tr>
<tr>
<td>1</td>
<td>Agile patency capsule Given Imaging Ltd (for the follow-up of the intestinal patency through dissolute capsule)</td>
</tr>
<tr>
<td>1</td>
<td>Scanner for the follow-up of the agile patency capsule in the intestine given imaging Ltd</td>
</tr>
<tr>
<td>1</td>
<td>Portable hard disk 320 GB Given Imaging Ltd</td>
</tr>
<tr>
<td>1</td>
<td>Package of clinical technical training</td>
</tr>
<tr>
<td>1</td>
<td>Kit of training to the videoendoscopy capsulare pillcam given imaging</td>
</tr>
</tbody>
</table>

Data from M.G. Lorenzatto s.p.a.

Budget impact of WCE for the Italian NHS

For the assessment of the elements of cost the method of the standard costing has been used. The costs attributed to the various elements used in the WCE was derived as an average of the declared values by centres or when incomplete were derived from market prices. All costs are inclusive of VAT (20%). The average personnel costs (table 6.11) were estimated using the National Collective Contract of Category 2004 inclusive of employer’s contributions.
Table 6.11 Average cost of personnel involved in the WCE procedure in Euros

<table>
<thead>
<tr>
<th></th>
<th>WCE</th>
<th>Medical Reporting</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>€ 24,06</td>
<td>€ 135,36</td>
<td>€ 23,06</td>
</tr>
<tr>
<td>range</td>
<td>€20,90-€27,50</td>
<td>€118,80-€151,80</td>
<td>€19,80-€26,40</td>
</tr>
<tr>
<td>Nurse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>€ 11,09</td>
<td>€ 8,53</td>
<td>€ 5,33</td>
</tr>
<tr>
<td>range</td>
<td>€9,39-€12,80</td>
<td>€3,41-€7,25</td>
<td></td>
</tr>
<tr>
<td>Support Operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>€ 3,38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>range</td>
<td>€2,03-€4,74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrative costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>€ 3,38</td>
<td>€ 2,37</td>
<td>€1,35</td>
</tr>
<tr>
<td>range</td>
<td>€2,37-€4,06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: data from responding centres analysed by age.na.s.

The costs of consumed materials were valued as indicated by the responding centres and when incomplete were based on market prices (Table 6.12). For some items (standard WCE and patency test WCE) price data were provided by the only manufacturer of WCEs in 2006 (Lorenzatto s.p.a. authorised distributor of Given Imaging Ltd).

Table 6.12 Cost of consumables for a single WCE procedures

<table>
<thead>
<tr>
<th></th>
<th>Quantity</th>
<th>Unit Costs in Euros</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCE</td>
<td>1</td>
<td>€ 642,00</td>
</tr>
<tr>
<td>Patency test WCE</td>
<td>1</td>
<td>€ 117,60</td>
</tr>
<tr>
<td>Surgical Gauze</td>
<td>4</td>
<td>€ 0,08</td>
</tr>
<tr>
<td>Surgical gloves</td>
<td>2</td>
<td>€ 0,02</td>
</tr>
<tr>
<td>Disinfectant</td>
<td></td>
<td>€ 0,05</td>
</tr>
<tr>
<td>Disposable sheets</td>
<td>1</td>
<td>€ 0,18</td>
</tr>
<tr>
<td>Procinetics drugs: Metoclopramide, Plasil, Dimeticone, Simiticone,</td>
<td>10 mg</td>
<td>€ 0,24</td>
</tr>
<tr>
<td>Valium</td>
<td>2 mg</td>
<td>€ 0,34</td>
</tr>
<tr>
<td>Razor</td>
<td>1</td>
<td>€ 0,10</td>
</tr>
<tr>
<td>Paper cup + 1/2 lt. Water</td>
<td>1</td>
<td>€ 0,40</td>
</tr>
<tr>
<td>Paper and computer consumables</td>
<td></td>
<td>€ 0,60</td>
</tr>
</tbody>
</table>

*note that the “Patency test capsule” is only used in some centres.

Source: data from responding centres analysed by age.na.s.
The average costs of equipment were derived by the average indicated by responding centres. The single costs of purchasing were discounted to 2006 (the year of reporting) to make them comparable. The depreciation rate is 8 years as declared by the responding centres. Depreciation has been estimated with the method of straight-line depreciation (Table 6.13).

Table 6.13 Average cost of equipment

<table>
<thead>
<tr>
<th>N. Centres</th>
<th>Quantity</th>
<th>Purchase year</th>
<th>Depreciation</th>
<th>Average cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>25</td>
<td>1</td>
<td>2000-2006</td>
<td>8</td>
</tr>
</tbody>
</table>

Source: data from responding centres analysed by age.na.s.

The overall average cost of a single examination with WCE is subject to variation on the basis of the volume of annual examinations carried out by each centre. Three different budget impacts (table 13) have been estimate according to the volume of examinations carried out in the centres with a high, medium and low throughput:

- 10 annual WCE examinations;
- 44 annual WCE examinations;
- 190 annual WCE examinations.

In the first case (centres with 10 annual WCE examinations) the estimate of economic impact caused by a single examination WCE is € 1,624,30, in the second case (centres with 44 annual WCE examinations) it is € 1,108,41 and in the third case (centres with 190 annual WCE examinations) € 998,28. The number of annual examinations undertaken influences the unit costs in presence of a set number of annual WCE examinations (Table 6.14).
Table 6.14 Average direct costs of a single WCE for volumes of examinations

<table>
<thead>
<tr>
<th></th>
<th>Low use (n=10 WCEs)</th>
<th>Medium use (n=44 WCEs)</th>
<th>High use (n=190 WCEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff</td>
<td>€ 203.64</td>
<td>€ 161.82</td>
<td>€ 158.52</td>
</tr>
<tr>
<td>range</td>
<td>€ 176.02–€ 231.16</td>
<td>€ 145.26–€ 178.26</td>
<td>€ 141.96–€ 174.96</td>
</tr>
<tr>
<td>Equipment</td>
<td>€ 581.71</td>
<td>€ 132.21</td>
<td>€ 30.62</td>
</tr>
<tr>
<td>Capsule Endoscopy</td>
<td>€ 642.00</td>
<td>€ 642.00</td>
<td>€ 642.00</td>
</tr>
<tr>
<td>Materials of consump-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>€ 2.00</td>
<td>€ 2.00</td>
<td>€ 2.00</td>
</tr>
<tr>
<td>Average unit cost per WCE procedure</td>
<td>€ 1,429.35</td>
<td>€ 938.03</td>
<td>€ 833.14</td>
</tr>
<tr>
<td>range</td>
<td>€ 1,402.37–€ 1,457.51</td>
<td>€ 921.47–€ 954.47</td>
<td>€ 816.58–€ 851.58</td>
</tr>
</tbody>
</table>

*note that the “Patency test capsule” is only used in some centres.

Source: data from responding centres analysed by age.na.s.

6.2 An assessment of patient’s acceptability of the WCE procedure

6.2.1 Objective, materials and methods

Our objective was to collect information on the acceptability of the WCE by patients compared to other endoscopic interventions (Colonoscopy, EGDS) which are supposed to be more “invasive” and thus less acceptable, and to gain a better understanding on the indirect costs of the two procedures from a social point of view.

Five centres amongst the ones that completed our questionnaire were selected on the basis of the highest number of WCE procedures performed per year: from a minimum of 80 to a maximum of 190 WCE per year (Appendix 10). Each centre’s physicians who returned the questionnaire and were nominated as responsible for the procedure received a questionnaire for all consecutive patients that, during the chosen time period (February to May 2008), underwent the WCE test. Questionnaires were self administrated. All hospital centres involved sent back the questionnaires. The final analysis was based on a total of 120 questionnaires.

We constructed the questionnaire based on the available literature dealing with WCE patient’s satisfaction or acceptability (see section 5 on acceptability), and with the advice of the
gastroenterologists participating in the survey. It was piloted in 20 patients in Lazio Region, to assess filling time, clarity and wording. The final questionnaire was divided into two specular parts aimed at gathering information on the WCE and the latest previous endoscopic procedures undergone by the respondent. Questions dealt with three main aspects that define “acceptability”: difficulty of intervention (e.g. problems in capsule swallowing, retention time etc), painfulness during and after the procedure, individual problems in term of movements and anxiety, and final judgement on tolerability of the whole procedure. Socio-demographic data were also collected together with a quantification of the time lost by patients to undergo each procedure.

6.2.2 Results

6.2.2.1 Socio economical characteristics of patients

The five selected centres distributed 127 patient questionnaires (54 male e 64 female and 3 not specified). 62% (79) were married, 23% (25) single and 5% cohabiting (17 not specified).

The patient’s educational achievements were high school diploma (50%), primary education (13%), university degree (17) and postgraduate diploma (2%) (Figure 6.13). The reported occupations of patients were manual worker (6%), employee (15%), manager (4%), trader (1%), entrepreneur (1%), student (3%), housewife (14%), consultant (7%), retired (41%), unemployed (1%), other (7%) (Figure 6.14).

Figure 6.13 Educational qualification of patients (n=115)

Source: data from responding centres analysed by age.na.s.
Patients undergoing WCE took more than 7 hours off work in 70% of cases. Twenty-two percent of those undergoing the WCE procedure lost 7-8 hours and 48% more than 8 hours. Forty-six percent of those undergoing CS/EGDS lost more than 7 hours (7% lost 7-8 hours and 39% more than 8 hours) (Figure 6.15).

Source: data from responding centres analysed by age.na.s.
6.2.2.2 *Acceptability dimensions for the WCE and other endoscopies*

Patients indicated a greater ease of performing the WCE in comparison to CS/EGDS (Figure 6.16). Sixteen percent of patients undergoing CS/EGDS indicated a degree of difficulty in the procedure (11% difficult, 5% very difficult).

Figure 6.16 Ease of execution of the procedure WCE (n=125) and CS/EGDS (n=125)

![Ease of execution graph](image)

Source: data from responding centres analysed by age.na.s.

During the procedures 84% of patients undergoing WCE had no perceivable pain, compared to 33% with CS/EGDS (Figure 6.17). Patients undergoing CS/EGDS felt severe pain in 10% of cases and extreme in 3% of cases.

Figure 6.17 Pain during the procedure with WCE (n=123) and CS/EGDS (n=126)

![Pain graph](image)

Source: data from responding centres analysed by age.na.s.
After the WCE procedure, 83% of patients experienced no perceivable pain compared to 48% with CS/EGDS (Figure 6.18). Patients who underwent CS/EGDS, felt severe (3%) or extreme (2%) pain after the procedure.

Figure 6.18 Pain after the procedure with WCE (n=110) and CS/EGDS (n=119)

![Pain After Procedure Graph](image)

Source: data from responding centres analysed by age.na.s.

Twenty nine percent of patients undergoing the WCE procedure recorded difficulty of movement during the recording and procedure compared with 22% undergoing CS/EGDS (Figure 6.19).

Figure 6.19 Difficulty of movement during the recording/procedure with WCE (n=126) and CS/EGDS (n=117)

![Difficulty of Movement Graph](image)

Source: data from responding centres analysed by age.na.s.
Twenty percent of patients undergoing WCE reported a state of anxiety compared with 52% of those undergoing CS/EGDS (Figure 6.20).

Figure 6.20 Anxiety in patients undergoing the WCE procedure (n=124) and CS/EGDS (n=115)

![Bar chart showing anxiety levels in WCE and CS/EGDS](image)

Source: data from responding centres analysed by age.na.s.

Altogether the level of tolerability in patients is high in 68% of the cases, medium in 27% and low in 5% in the WCE. The patients who underwent CS/EGDS indicated a high tolerability in 33% of cases, 52% a medium level and 15% a low level (figure 6.21).

Figure 6.21 Total level of tolerability of WCE procedure (n=123) and CS/EGDS (n=119)

![Bar chart showing tolerability levels in WCE and CS/EGDS](image)

Source: data from responding centres analysed by age.na.s.
7. Discussion

We found a sizeable amount of low quality literature which dramatically reduced our capability to draw conclusions on the diagnostic accuracy of the wireless capsule for endoscopy. Most studies had faulty design and faulty reporting. The typical sequential study design used by the majority of researchers in which the same patient underwent the WCE procedure and the reference standard, introduced a notable element of time bias into the observation period. As angiodyplasia and other variable morphology lesions were the most diagnosed and often the most frequent indications for use of the WCE, the capability of comparing like with like (i.e. of having the same probability that similar patients had lesions of roughly the same appearance and evolution stage) would have been the basic pre-requisite for a meaningful comparison. Such comparability can only be achieved by a randomised design in which a set of people are given an equal chance of being assigned to the WCE procedure or its comparator so that all differences between participants are balanced and results are comparable. This is the reason why the trial by De Leusse et al is the only credible piece of evidence at our disposal, however small its denominator. The majority of researchers justified the choice of study design with the idea that each patient provided his or her own control, thus minimising the effect of confounders. Far from this being the case, in rapidly evolving lesions the time bias present in the sequential design used maximised the effects of confounding making images from the same patient non-comparable in the majority of cases. Respondents to our questionnaire appeared not to have understood the basic requirement to compare like with like. In addition some experts expressed the view that conducting a clinical trial of such a dominant and safe device as the WCE would be unethical. This view is particularly dangerous because as we have shown the WCE has not been tested in sufficient numbers against a comparator allowing visualisation of the entire small bowel mucosa (i.e. double balloon enteroscopy with double access or intraoperative enteroscopy. The De Lusse et al study was correctly designed (i.e. the methods used could answer the study objectives). However its results should be interpreted with caution. The trial is small (78 participants) highly contextualised and the authors draw conclusions not based on the finding of superior diagnostic accuracy but on the better tolerability of the WCE compared to PE.

Overall other problems with the rationale, design and reporting of the studies further weakened the validity of our evidence base. Few studies clearly stated the rationale for the choice of comparator and some even reported a “cross over” design, mistaking it for the sequential design actually used. Twenty nine percent of included studies with a sequential design failed to report the time interval between one procedure and the other and few reported funding source and/or contained an authors’ conflicts of interest statement. The WCE seems to be better tolerated than a range of other procedures and our patient questionnaire results confirm this view. The WCE is not however free from harms and in 1% of cases its use and retention led to a major surgical procedure such as laparotomy for removal being carried out or in an anxious wait for the expulsion of a retained capsule. Few studies reported harms due to their small size, so our survey may provide the first reliable estimates of their incidence. In addition a thorough preparation of the patient and correct use of the WCE are necessary as shown by the high proportion of failures or of incomplete procedures (nearly 15% of those carried out in the 56 responding centres in 2006).

Our safety dataset of over two thousand observations is to our knowledge the largest in existence from a single nation although we are aware of large international case series (such as the one comprising 733 cases reported by Rondonotti et al).
Our data do not support the view that technical failures were more common in the earlier stages of WCE use, although we used date of publication as a proxy for date of execution of the study and of device type.

Our enquiries on the use of the WCE in the Italian context paint a varied picture with peaks and troughs of use probably unrelated to clinical need and some frankly disturbing indications for its use. For example a biopsy is necessary in all cases to make a definitive diagnosis in coeliac disease and its ethical use in situations of high likelihood of intestinal stenosis such as Crohn's disease is debatable. The enthusiasm of a few centres far outstrips the evidence base on which the appropriate use of the WCE procedure should take place. Variability of use is also reflected in the variability of costs which persist even after adjustment for the optional configuration of the WCE set. The WCE in Italy is an expensive procedure, but we cannot say whether it is cost-effective if compared to the alternatives available in 2006 or likely to be cost-effective compared to the current alternatives, as we lack clear evidence to guide indications and unbiased evidence of its comparative performance. Our evidence shows that centres in which the highest numbers of procedures are carried out have the lowest costs. This however should not be interpreted as a reason to increase WCE use in the absence of credible evidence of diagnostic accuracy.
8. Recommendations

Given the present and future development of the technology a reasonable way forward may be to link reimbursement of the WCE to its use in adequately designed and powered randomised controlled trials with a potential crossover design similar to that of the De Leusse et al trial18. These should test the performance of the WCE for present and future indications under the supervision of scientific and ethical committees. We further recommend that this process (called coverage with evidence generation), widely adopted abroad should be adopted in Italy for all promising new technologies.
9. Funding

Production of this report was made possible by financial contributions from the Italian Ministry of Health (CUD, Commissione Unica Dispositivi) and the Age.Na.S.

The Age.Na.S. takes sole responsibility for the final form and content of this report. The views expressed herein do not necessarily represent the views of the Italian Ministry of Health or any regional government.
10. Competing interests declaration

The authors declare that they will not receive either benefits or harms from the publication of this report. None of the authors have or have held shares, consultancies or personal relationships with any of the producers of the devices assessed in this document.
Glossary

Coeliac Disease (COD)
COD is a disease occurring in children and adults characterized by sensitivity to gluten, with chronic inflammation and atrophy of the mucosa of the upper small intestine; manifestations include diarrhoea, malabsorption, steatorrhea, nutritional and vitamin deficiencies, and failure to thrive, or short stature.

Cochrane Library (CLIB)
A collection of databases, published on disk, CD-ROM and the Internet and updated quarterly, containing the Cochrane Database of Systematic Reviews, the Cochrane Controlled Trials Register, the Database of Abstracts of Reviews of Effectiveness, the Cochrane Review Methodology Database, and information about the Cochrane Collaboration and other information.

Cochrane Review
A Cochrane Review is a systematic, up-to-date summary of reliable evidence of the benefits and risks of healthcare. Cochrane Reviews are intended to help people make practical decisions. For a review to be called a "Cochrane Review" it must be in the Parent Database maintained by the Cochrane Collaboration. The Parent Database is composed of modules of reviews submitted by Collaborative Review Groups (CRGs) registered with the Cochrane Collaboration. The reviews contributed to one of the modules making up the Parent Database are refereed by the editorial team of the CRG, as described in the CRG module. Reviewers adhere to guidelines published in the Cochrane Reviewers’ Handbook.

Cost
A negative variation in utility.

Crohn’s Disease
Crohn’s Disease (CD) is a subacute chronic enteritis, of unknown cause, involving the terminal ileum and less frequently other parts of the gastrointestinal tract; characterised by patchy deep ulcers that may cause fistulas, and narrowing and thickening of the bowel by fibrosis and lymphocytic infiltration, with non caseating tuberculoid granulomas that also may be found in regional lymph nodes.

Decision Tree
Decision tree is a basic decision making tool used when in need of analysing a clinical problem with an underlying time and logic structure. The structure of the tree illustrates the three struc-
tural components: alternative actions that the decision maker can take; events that result from a specific decision and the influences on such actions (i.e. clinical information obtained or resulting clinical outcomes); patient outcomes connected to each possible action scenario.

Direct cost

A cost entirely related to the product, activity or service provided by the cost evaluation program. These costs can be allocated to a specific cost centre only if they can be directly attributed to the specified cost centre.

Discount rate

Discounting describes a method that calculates how much one euro is worth today if paid after one or more years.

Economic Evaluation

A comparative analysis of costs and outcomes of several alternative actions. Therefore the main function of such evaluation is to identify, measure, assign values and compare costs and outcomes of examined alternatives.

Fixed cost

Fixed cost is a cost that does not vary with the activity level. It is relatively stable and it is usually expressed in the units of time (usually as annual cost) rather than units of volume.

Incremental cost

Incremental cost is the cost necessary to increase the total production. It indicates the difference in terms of cost or effect, between two or more evaluated programs or treatments.

Indirect cost

Is the value that cannot be directly traced back to a specific activity, service or product used in the program.

Likelihood Ratios

1. **Positive Diagnostic Likelihood Ratios**

Diagnostic likelihood ratios (DLR), can be a valuable tool for comparing the accuracy of several tests to the gold standard, and they are not dependent upon the prevalence of disease.
The positive DLR represents the odds ratio that a positive test result will be observed in an infected population compared to the odds that the same result will be observed among a non-infected population.

2. Negative Diagnostic Likelihood Ratios

The negative DLR represents the odds ratio that a negative test result will be observed in an infected population compared to the odds that the same result will be observed among a non-infected population.

Mean cost

The mean cost for one unit of product is the total cost of N units of product divided by N.

Meta Analysis

Meta analysis uses statistical methods to combine and integrate results from a number of previous experiments or studies examining the same question, in an attempt to summarise the totality of evidence relating to a particular issue. This combination will produce a more robust conclusion than the one obtained in a single study.

Obscure bleeding

Recurrent or persistent IDA, positive FOBT, or visible bleeding with no bleeding source found at original endoscopy

Obscure occult bleeding

Subcategory of obscure bleeding characterised by recurrent or persistent IDA and/or positive FOBT with no source found at original endoscopy; no visible blood in faeces.

Obscure overt bleeding

Subcategory of obscure bleeding characterised by recurrent or persistent overt/visible bleeding with no source found at original endoscopy; bleeding manifest as visible blood in emesis or faeces.

Occult bleeding

Initial presentation of IDA and/or positive FOBT; no visible blood in faeces
Odds ratio (OR)
Both the odds ratio and the relative risk compare the likelihood of an event between two groups.

Overt or visible bleeding
Gastrointestinal bleeding manifest as visible bright red or altered blood in emesis or faeces

Outcome
Outcome is used to indicate results and value of a health intervention. Mortality and similar units are often used as outcome measurements to evaluate the effect on a population or a health care system. In other cases outcome is the result of a specific diagnostic or therapeutic procedure.

Relative risk (RR)
In statistics and mathematical epidemiology, relative risk (RR) is the risk of an event (or of developing a disease) relative to exposure. Relative risk is a ratio of the probability of the event occurring in the exposed group versus the control (non-exposed) group.

Sensitivity analysis
An analysis used to determine how sensitive the results of a study or systematic review are to changes in how it was done. Sensitivity analyses are used to assess how robust the results are to uncertain decisions or assumptions about the data and the methods that were used.

Sensitivity
The sensitivity of a test is the probability that the test is positive when given to a group of patients with the disease. Sensitivity is sometimes abbreviated Sn.

A large sensitivity means that a negative test can rule out the disease. David Sackett coined the acronym “SnNOut” to help us remember this.

Specificity
The specificity of a test is the probability that the test will be negative among patients who do not have the disease. Specificity is sometimes abbreviated Sp.

A large specificity means that a positive test can rule in the disease. David Sackett coined the acronym “SpPin” to help us remember this.
Positive predictive value

The positive predictive value of a test is the probability that the patient has the disease when restricted to those patients who test positive. This term is sometimes abbreviated as PPV.

If the prevalence of the disease in your situation is different from the prevalence of the disease in the research study you are examining, then you can use likelihood ratios to estimate the PPV.

Negative predictive value

The negative predictive value of a test is the probability that the patient will not have the disease when restricted to all patients who test negative.

If the prevalence of the disease in your situation is different from the prevalence of the disease in the research study you are examining, then you can use likelihood ratios to estimate the NPV.

Time Preference for Health test:

This unit indicates the social discount rate at which decision makers exchange the present with future consumptions. This parameter is often approximated with the real interest rate (net inflation rate) of state bonds.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA</td>
<td>American Gastroenterology Association</td>
</tr>
<tr>
<td>CCOHTA</td>
<td>Canadian Coordinating Office of Health Technology</td>
</tr>
<tr>
<td>CD</td>
<td>Crohn’s Disease</td>
</tr>
<tr>
<td>COD</td>
<td>Coeliac Disease</td>
</tr>
<tr>
<td>CS</td>
<td>Colonoscopy</td>
</tr>
<tr>
<td>CT</td>
<td>Computer Tomography</td>
</tr>
<tr>
<td>CRD</td>
<td>Centre for Reviews and Dissemination</td>
</tr>
<tr>
<td>DBE</td>
<td>Double Balloon Enteroscopy</td>
</tr>
<tr>
<td>EGD</td>
<td>Esophago Gastro Duodenoscopy</td>
</tr>
<tr>
<td>FAP</td>
<td>Familial Adenomatous Polyposis</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FOBT</td>
<td>Faecal Occult Blood Test</td>
</tr>
<tr>
<td>HTA</td>
<td>Health Technology Assessment</td>
</tr>
<tr>
<td>KCE</td>
<td>Centre Fédéral d’Expertise de soins de Santé</td>
</tr>
<tr>
<td>IE</td>
<td>Intraoperative Enteroscopy</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Clinical Excellence (UK)</td>
</tr>
<tr>
<td>NDDIC</td>
<td>National Digestive Diseases Information Clearinghouse</td>
</tr>
<tr>
<td>OGIB</td>
<td>Obscure Gastrointestinal Bleeding</td>
</tr>
<tr>
<td>PE</td>
<td>Push Enteroscopy</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>SBS</td>
<td>Small Bowel Series</td>
</tr>
<tr>
<td>SBTS</td>
<td>Small bowel follow through</td>
</tr>
<tr>
<td>SI</td>
<td>Small Intestine</td>
</tr>
<tr>
<td>SR</td>
<td>Systematic Review</td>
</tr>
<tr>
<td>WCE</td>
<td>Video Capsule Endoscopy</td>
</tr>
</tbody>
</table>
Bibliography

10. MSAC. M2A(R) capsule endoscopy for the evaluation of obscure gastrointestinal bleeding in adult patients. Medical Services Advisory Committee 2003 (MSAC Application 1507), 2003;159.

12. KCE Endoscopie par capsule, Centre Federal d’Expertise des Soins de Santé, 2006;25B

Appendix 1

Expert Opinion Questionnaire
Wireless Capsule Endoscopy (WCE)

1) How many OGIB cases require the use of WCE?

☐ 0%
☐ 1%
☐ 2%
☐ 3%
☐ 4%
☐ 5%
☐ 6%
☐ 7%
☐ 8%
☐ 9%
☐ 10%

Other (define):

2) Which is the best diagnostic alternative to the WCE?

☐ Double Balloon Enteroscopy
☐ Push Enteroscopy
☐ Small Bowel RX
☐ Computer Tomography (CT)
☐ Magnetic Resonance Imaging (MRI)

Other (define):
Questionnaire results

Figure 1. Expert’s opinion percentage of OGIB cases requiring a WCE after negative endoscopies

![Pie chart showing percentage of OGIB cases requiring a WCE after negative endoscopies](chart1)

Figure 2. Diagnostic alternatives* to the WCE (n=82)

![Pie chart showing diagnostic alternatives to the WCE](chart2)

* SBRX= Small Bowel RX; PE= Push Enteroscopy; DBE=Double Ballon Enteroscopy; MRI=Magnetic Risonance Imaging; CT= Computer Tomography; Other= Scintigraphy, Arteriography, Angiography
Appendix 2a

Wireless capsule endoscopy (WCE)

Miniaturisation represents a continuing trend in technology toward ever-smaller scales for mechanical, optical and electronic devices. In the industry of medical devices this trend has carried out a variety of diagnostic and therapeutic procedures that are less invasive than only few years ago. In the field of endoscopy, miniaturisation means that, theoretically, even the deepest cavity of the body is reachable without difficulty.

A key-point is surely represented by the image sensors which have to be embedded on the tip of the endoscope for acquire the images that will be transmitted to the monitor outside the body. An image sensor is a device that converts a visual image (light) to an electric signal. The smaller the sensor the smaller the tip of the endoscope and thus less invasive will be the procedure.

In this field the CCD images sensor and the CMOS sensor are the most used technologies. Both types of sensor accomplish the same task of capturing light and converting it into electrical signals.

- CCD (Charge-Coupled Device): every pixel’s charge is transferred through a very limited number of output nodes (often just one) to be converted to voltage, buffered, and sent off-chip as an analogical signal.

- CMOS (Complementary Metal-Oxide-Semiconductor): each pixel has its own charge-to-voltage conversion, and the sensor often also includes amplifiers, noise-correction, and digitisation circuits, so that the chip outputs digital bits. These other functions increase the design complexity and reduce the area available for light capture.

Both CCDs and CMOS imagers can offer excellent imaging performance.

CCDs offer good image quality and flexibility at the expense of system size. They remain the most suitable technology for high-end imaging applications, such as digital photography, broadcast television, high-performance industrial imaging, and most scientific and medical applications (Litwiller 2001).

CMOS imagers offer small system size at the expense of image quality (particularly in low light) and flexibility. They are the technology of choice for high-volume, space constrained applications where image quality requirements are low. This makes them a natural fit for security cameras, PC videoconferencing, wireless handheld device videoconferencing, bar-code scanners, fax machines, consumer scanners, toys, biometrics and some automotive in-vehicle uses (Litwiller 2001).
Wireless Capsules for Endoscopy (WCE)

WCE is also known as Video-Capsule for Endoscopy (VCE), capsule camera, video pill, or capsule endoscopy. It consists in a camera with the size and shape of a large pill used to acquire images of the gastrointestinal tract.

At the present time, the capsule camera is primarily used to visualise the small bowel (from the jejunum to ileum). Unlike the upper gastrointestinal tract (esophagus, stomach, and duodenum) and the colon (large intestine), that can be very adequately visualised with endoscopes, the small bowel is very long (more than 5 meters), very convoluted and thus hardly observable with endoscopes.

WCE represent a monumental advance in the diagnosis of small bowel diseases but at the moment biopsies and endoscopic interventions are not possible.

Operating principle of video-capsules for endoscopy

Although there are 2 different devices available on the market, the principle of operation of the endoscopic capsule is quite similar (at a first sight, the only difference seem to be the image sensor). Due to its mini-invasivity, this technology seems to be very promising and for this reason, the two manufacturers were involved in a long and very expensive patent litigation settled in April 2008. Under the terms, Olympus will pay Given Imaging Ltd. $ 2.3 million. The companies will cross licence existing patents to each other without royalty payments and have agreed to work out royalty payments for future patents (marketwatch website).

The two devices are the size of a large pill, and are composed by:

- one or more batteries;
- a strong light source (light-emitting diodes, LED);
- an image sensor;
- a small transmitter.

Once swallowed, the capsule begins transmitting images (for about 8 hours) of the inside of the gastrointestinal tube. Sensors are attached to the patient’s abdomen and wired to a portable recorder. The recorder is battery-operated and is composed of a receiver, a processor, and a hard disk to store the images. These video images are transmitted by means of ultra-high-frequency radio telemetry to the sensor array, which subsequently sends the data to the recorder (Figure A2.1).

After some hours the patient returns the belt to the physician who loads the information into a computer and then can review in detail the pictures of the intestine, looking for abnormalities. Image interpretation takes from 30 minutes to 2 hours, depending on experience, but is tipically one hour (Hara 2005). The capsule is disposable, propelled by peristalsis and excreted after 24-48 hours.
State of the Art

Two companies share the worldwide market for this technology:

- Given Imaging Ltd. with its PillCam SB;
- Olympus Corporation with its EndoCapsule;

PillCam SB (Given Imaging Ltd.)

The first capsule endoscope in the worldwide market was the M2A capsule by Given Imaging Ltd. M2A received approval from the U.S. Food and Drug Administration (FDA) and permission to affix the CE mark in 2001. In 2005, Given Imaging Ltd. brought the second generation capsule endoscope to the market (PillCam SB) with some new features like the real-time view system. PillCam SB consists of: a capsule “endoscope”, an external receiving antenna with attached portable hard-drive, and a customised PC workstation with a dedicated software for reviewing and interpretation of images. The capsule weighs 3.7 grams and measures 11 mm in diameter x 26 mm in length (Figure A2.2). It includes a CMOS chip camera of 256x256 pixels, a short focal length lens, 4 to 6 white LED, two silver oxide batteries, and a UHF band radio telemetry transmitter. Image features include a 140° field of view, 1:8 magnification, 1 to 30 mm depth of view, and a minimum size of detection of about 0.1 mm. The activated capsule provides images at a frequency of 2 frames per second until the battery expires after 7±1 hours, which enables the device to take up to 55,000 images in jpg format (Figure A2.3) (Shelat 2006).

From the end of 2007 a newer version of PillCam SB is on the market: PillCam SB2. The main improvements consist of a better lens system, and a wider field of view (156° instead of 140°). (Given website). One of the concerns in the WCE procedure is the capsule retention that may occur when strictures of the lumen are present. To assess the patency of the gastro-intestinal tract, Given Imaging Ltd. has developed the Agile Patency System. This system consists of a radio-
frequency scanner and a test capsule having the same dimensions of the PillCam. The test capsule is swallowed prior to administration of the diagnostic capsule and consists of a dissolvable body containing a radio-frequency identification tag. If strictures are present, the retained test capsule will dissolve in about 30 hours.

Figure A2.2: PillCam SB (Given Imaging Ltd.)

Figure A2.3: Example image with PillCam SB (angiodysplasia of the small bowel from Hartmann 2007)

EndoCapsule (Olympus Corporation)

Olympus Medical Systems has recently (2007) developed a capsule endoscope (EndoCapsule, EC type 1) that uses a different image sensor with electronic enhancement of image quality. The capsule is the same size as the PillCam SB (11 × 26 mm) and produces the same number of images per hour (Figure A2.4) (Olympus website).

In particular, the Olympus WCE system differs from the Given Imaging Ltd. capsule previously described for a high-resolution CCD sensor (Figure A2.5).

The Olympus EndoCapsule software provides a complex antenna consisting of eight antennas combined into one. The antenna receiving the strongest signal is highlighted and serves for the localization of capsule’s position in the gastrointestinal tract. The technology is considered imprecise, and locating the position of the capsule in the abdomen is judged considering also checking directly the capsule images during the procedure using the Olympus External Viewer (the mucosal patterns of the jejunum and ileum) (Hartmann 2007).

Figure A2.4: EndoCapsule (Olympus Corp.)

Figure A2.5: Example image with EndoCapsule EC type 1 (angiodysplasia of the small bowel from Hartmann 2007)
The Future

Given have recently presented two new video-capsules, equipped with two imaging device and light source (one at both ends): PillCam ESO and PillCam COLON (Figure A2.6).

The PillCam ESO takes up to 14 images per second, as it passes down the esophagus during the 20-minute procedure. PillCam ESO was developed for patients suffering from esophageal disorders, such as esophageal varices, which can result in fatal bleeding, and Barrett’s esophagus, which is an early indication for esophageal cancer. The improved version, PillCam ESO2, was cleared for marketing by U.S. FDA in May 2007. It is the same size as the PillCam ESO video capsule but has a wider angle of view and captures 18 frames per second. The indications for this video capsule are similar to PillCam ESO however, the Company believes that screening for gastroesophageal reflux disease could be possible in the near future.

The PillCam COLON 11 mm × 31 mm (slightly longer than other PillCams) captures 4 images per second during the 10-hour procedure. PillCam COLON was cleared for marketing in the European Union in October 2006 and Israel in February 2008. The video capsule was initially developed to help physician’s visualise the colon and is currently being used for patient’s that have had an incomplete colonoscopy, for those contraindicated for a colonoscopy or for those who prefer not to have a colonoscopy. Multi-centre clinical trials are underway in Europe (Given website).

Figure A2.6: Given imaging Ltd. products (PillCam ESO, PillCam SB2 and PillCam COLON)

A new-concept device could be available in the next few years. RF System Lab. has declared that their capsule for endoscopy (Sayaka Capsule Camera) will be on the market in 2010. The innovations carried by this device consisting in the ability to change the camera position and enable the camera to rotate. While conventional capsules typically have cameras at one end of the device, Sayaka’s camera has been positioned on the side, where it has a lateral view of the intestinal walls. In addition, a tiny stepper motor rotates the camera as the capsule passes through the digestive tract.

Sayaka’s power is supplied wirelessly from an external source (and it contains no battery). Photos acquired are sent to a receiver located near the body. Image “mosaicking” technology is then used to combine multiple images taken from various angles into a flat, high-resolution rectangular map of the intestines, which can be magnified up to 75 times. Sayaka is characterised by a double-structured capsule made up of an outer and an inner shell. Whereas the outer capsule traverses through the gastrointestinal tract, the inner capsule alone spins. This spinning is derived by an electromagnet and a small permanent magnet and which causes the “stepping rotation”.

Over an 8-hour period procedure, Sayaka will generate approximately 870,000 images of the whole digestive tract at a rate of 30 frames per second. (RFSysytem website).
Bibliography

http://www.givenimaging.com

http://www.rfamerica.com/sayaka/index.html
Appendix 2b

Standard technology for diagnosis of bowel diseases

One of the most common symptom imputable to a bowel disease is the obscure gastro-intestinal bleeding (OGIB) defined as “bleeding from the GI tract that persists or recurs without an obvious aetiology after esophagogastroduodenoscopy, colonoscopy, and radiologic evaluation of the small bowel such as small bowel follow-through or enteroclysis” (AGA).

As showed in Table 1, the diagnosis for such conditions is very difficult since a lot of diseases present OGIB.

Table 1: Differential diagnosis of occult gastrointestinal bleeding (OGIB)

<table>
<thead>
<tr>
<th>Mass lesions</th>
<th>Infectious diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoma (any site)†</td>
<td>Hookworm</td>
</tr>
<tr>
<td>Large (>1.5 cm) adenoma (any site)</td>
<td>Whipworm</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Strongyloidiasis</td>
</tr>
<tr>
<td>Erosive esophagitis†</td>
<td>Ascariasis</td>
</tr>
<tr>
<td>Ulcer (any site)†</td>
<td>Tuberculous enterocolitis</td>
</tr>
<tr>
<td>Cameron lesions‡</td>
<td>Amebiasis</td>
</tr>
<tr>
<td>Erosive gastritis</td>
<td>Surreptitious bleeding</td>
</tr>
<tr>
<td>Celiac disease</td>
<td>Hemothysis</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>Oropharyngeal bleeding (including epistaxis)</td>
</tr>
<tr>
<td>Crohn’s disease</td>
<td>Other causes</td>
</tr>
<tr>
<td>Colitis (nonspecific)</td>
<td>Hemosuscus pancreaticus</td>
</tr>
<tr>
<td>Idiopathic cecal ulcer</td>
<td>Hemobilia</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Long-distance running</td>
</tr>
<tr>
<td>Vascular ectasia (any site)†</td>
<td>Factitious cause</td>
</tr>
<tr>
<td>Portal hypertensive gastropathy or colopathy</td>
<td></td>
</tr>
<tr>
<td>Watermelon stomach</td>
<td></td>
</tr>
<tr>
<td>Varices (any site)</td>
<td></td>
</tr>
<tr>
<td>Hemangioma</td>
<td></td>
</tr>
<tr>
<td>Dieulafoy’s vascular malformation§</td>
<td></td>
</tr>
</tbody>
</table>

Notes: †These abnormalities are the most common; ‡These are linear erosions within a hiatus hernia; §This is a large superficial artery underlying a small mucosal defect (Zuckerman 2000).
Endoscopy is the examination and inspection of the interior of body organs, joints or cavities through flexible tubes called endoscopes. An endoscope uses optical fibres and powerful lens systems to provide lighting and visualisation of the interior of the body. The latest developed devices have an image sensor at the tip instead of the lens system.

An endoscope can consist of

- a rigid or flexible tube;
- a light delivery system to illuminate the organ or object under inspection (the light source is normally outside the body and the light is typically directed via an optical fibre system);
- a lens system transmitting the image to the viewer from the tip;
- an additional channel to allow entry of medical instruments or manipulators.

Endoscopy is classified as mini-invasive procedure but is not generally well accepted by the patients since it causes pain and discomfort and for this reason different ways to look inside the body have been developed.

Unlike imaging technologies, endoscopy allows the real-time intervention on the tissues being examined by means of distending the tissues, taking samples for biopsy, cleaning, cauterising, etc.
Push Enteroscopy (PE)

One of the standard procedures for looking inside the bowel is Push Enteroscopy (PE). This practice requires per oral insertion of a long endoscope (usually a dedicated enteroscope or paediatric colonoscope), and allows examination of the distal duodenum and proximal jejunum.

PE has been considered a useful diagnostic procedure for identifying small bowel lesions. However, this procedure is poorly tolerated, technically difficult (often requires deep sedation or anaesthesia, skilled operators and is time-consuming) and it is not free of complications.

Despite substantial improvements to PE in the last 10 years with manufacturers producing longer instruments (240 cm) with high quality video systems and overtubes, these instruments can only examine the upper gastrointestinal tract up to the proximal jejunum.

The procedure is usually done under anaesthesia (general anaesthesia or conscious sedation). The enteroscope is inserted through the mouth, with or without an overtube embedding an inflatable silicone balloon, and thanks to extraction-insertion manoeuvres or using the friction at the interface of the balloon and intestinal wall, it passed into the small bowel.

Due to the anatomical features of gastrointestinal tract, this kind of devices cannot reach all the points of the small bowel and then some “dark areas” cannot be observed (Gómez Rodríguez 2006).

Figure A2.9: Single-balloon enteroscope.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) endoscope; b) disposable sliding tube; c) assembled device

From Olympus website

Double-balloon enteroscopy (DBE)

Endoscopic examination of the entire small bowel is technically very difficult. Push enteroscopy is often possible only to the proximal jejunum. In 2001, Yamamoto and Kito developed the double balloon method as an insertion technique for the diagnosis and treatment of small bowel disorders (Yamamoto 2005).

The technique, called Double-Balloon Enteroscopy (DBE) or Push-and-Pull Enteroscopy, involves the use of a special enteroscope and a overtube (a tube that fits over the endoscope). Silicone inflatable balloons are embedded one on the enteroscope and one on the overtube.
The procedure is usually done under anaesthesia (general anaesthesia or conscious sedation). The enteroscope is inserted through the mouth (oral approach) and passed in conventional fashion into the small bowel. Subsequently, the enteroscope is inserted through the rectum (rectal approach) and arrives at the portion of small bowel that is unreachable through the oral route. The examination is performed by advancing the endoscope for small distances in front of the overtube and inflating the balloon at the end. Using the assistance of friction at the interface of the enteroscope and intestinal wall, the small bowel is accrued back to the overtube. The overtube balloon is then deployed, and the enteroscope balloon is deflated. The process is continued until the entire small bowel is visualised.

The main advantage of DBE is the possibility of visualise the entire small bowel to the terminal ileum. The disadvantage of this procedure is patient discomfort and the laborious and time consuming nature of the modality. Further, the procedure should be approached with caution in patients with prior small bowel resections (MacKalski 2006).

Figure A2.10:

a) Double-balloon enteroscope; b) Phases of DBE. **Oral approach:** endoscope and overtube are inserted through the mouth; the balloon on overtube is inflated; the scope is inserted further and the balloon on the scope is inflated; the overtube is advanced along the endoscope; the balloon on overtube is inflated; the balloon on the endoscope is deflated; the scope is inserted further the procedures are repeated and the scope can reach deeper and deeper locations. **Rectal approach:** the same procedure is performed inserting the endoscope through the rectum. Adapted from www.doubleballoonenteroscopy.com/procedure.html and Fujinon website.

Computer Tomography (CT)

Computer Tomography scanning (CT or CAT, Computer Assisted Tomography) is a non-invasive, painless imaging technique. CT uses special x-ray equipment to produce multiple images of the inside of the body and a computer to join them together in cross-sectional views of the area being studied. CT scans of internal organs, bone, soft tissue and blood vessels provide greater clarity than conventional x-ray exams.

This technology offer better quality images than standard radiography; completely eliminates the superimposition of images of structures outside the area of interest; discriminates between
tissues differing slightly in physical density and processing data from a single CT procedure, axial, coronal, or sagittal planes images can be obtained.

In small bowel examination CT can depict segmental thickening, extraluminal lesions, and complications such as sinus tracts, fistulas, and abscesses. Like magnetic resonance imaging (MRI), CT provides cross sectional imaging of extraintestinal organs, but its radiation (greater than that of small bowel x ray) present a significant disadvantage.

Conventional CT is limited in its assessment of the small bowel because artefacts are produced by collapsed bowel loops and there is no distension of the small bowel.

A relatively new diagnostic tool is CT enteroclysis which combines conventional small bowel enteroclysis with helical CT. The advantage offered by enteroclysis is distension of the small bowel and therefore intraluminal visualisation. The advantage of conventional CT is speed, resolution of volumetric data set, and optimal utilisation of the contrast media.

The disadvantage of CT scan compared with conventional barium studies is the lack of dynamic information (differentiation between peristalsis and skip lesions may be difficult). Compared with MRI, CT has greater availability, is less expensive, and is less time consuming. MRI, however, offers static and dynamic imaging capabilities (MacKalski).

CT is regarded as a moderate to high radiation diagnostic technique. While technical advances have improved radiation efficiency, there has been simultaneous pressure to obtain higher-resolution imaging and use more complex scan techniques, both of which require higher doses of radiation. The radiation dose for a particular study depends on multiple factors: volume scanned, patient build, number and type of scan sequences, and desired resolution and image quality. CT scans of children have been estimated to produce non-negligible increases in the probability of lifetime cancer mortality leading to calls for the use of reduced current settings for CT scans of children.

Magnetic Resonance Imaging (MRI)

Unlike conventional x-ray examinations and CT scans, MRI does not depend on radiation. Instead, radio waves are directed at hydrogen atoms, in a strong magnetic field.

As the patient lies inside the MRI unit, radio waves are directed at the hydrogen atoms in the area of his body being studied. In the magnetic field, these atoms, produce signals that are detected by the coils. A computer processes the signals and generates a series of images each of which shows a thin slice of the body. The computer provides three-dimensional representation of the body, which can be studied from many different angles on a computer monitor.

Since radio waves have effects on the hydrogen atoms, MR images can show differences in water content between various body tissues. As a result, MRI is especially suited to detecting disorders that increase fluid in diseased areas of the body, for example, areas affected by tumours, infection and inflammation. Overall, the differentiation of abnormal (diseased) tissue from normal tissues is significantly easier with MRI than with other imaging modalities such as x-ray, CT and ultrasound.
Although the strong magnetic field is not harmful in itself, medical devices that contain metal may malfunction or cause problems during an MRI exam.

Historically, intestinal assessment with MRI was suboptimal as slow sequences caused respiratory and peristaltic artefacts. Faster pulse sequences are now routinely used and allow both breath-held and breathing independent images with no physiological artefacts. Luminal distension with oral contrast material provides assessment of the bowel wall and its thickness and regularity.

MRI is a potentially ideal imaging modality for patients with Crohn’s disease who require repeated cross sectional imaging. Lack of ionising radiation, particularly in patients of reproductive age, is appealing. It is safe in pregnancy and in patients with renal failure, it is helpful in patients with equivocal findings by other imaging modalities. The greatest advantage is the ability to identify active inflammation and distinguish whether obstructions are from fibrotic strictures, adhesions, or active inflammation. Patients with small bowel obstruction can be examined with a minimally invasive approach (no intravenous contrast required) (MacKalski 2006).

Small Bowel Series (SBS) or Small Bowel follow-Through (SBTS)

STS or SBTS is an x-ray exam of the small intestine. This procedure requires that the patient swallows a radio-opaque contrast medium, usually barium sulphate, in various positions on the x-ray table while the radiologist uses a fluoroscope connected to a monitor for acquire x-ray images usually every 20 to 30 minutes (this exam often takes 2 hours or more to complete). Because fluoroscopy involves the use of x-rays all fluoroscopic procedures pose a potential health risk to the patient. Radiation doses to the patient depend greatly on the size of the patient as well as length of the procedure. More modern improvements in technology have allowed for increased image quality while minimizing the radiation dose to the patient (Hara 2005).

Enteroclysis

Enteroclysis is a minimally invasive radiographic procedure of the small intestine, which requires the introduction of a catheter into the small intestine followed by the injection of barium and methylcellulose. The catheter is passed from the nose or mouth through the stomach and into part of the small bowel and injects the barium which coats the intestine and the methylcellulose which distends the lumen allowing real-time fluoroscopic visualization of the entire small bowel. There are several different types of enteroclysis catheters available, and the choice is usually determined by radiologists’ preference, but cost can also be a factor in the decision. There are several advantages to having an enteroclysis in comparison to the traditional SBS: this examination is much quicker than a routine SBS and there is an increase in the distension of the lumen, which is very important for tissue characterisation (tissue properties are related to pathological condition).

Nevertheless this procedure presents two main drawbacks: the first and greatest disadvantage is the placement of the catheter, it can be uncomfortable for the patient, even with the use of anaesthetic spray and jelly; The second is that the patient will receive higher doses of radiation in comparison to the traditional SBS exam.

As stated for CT, for what concerns diagnosis of bowel diseases, suboptimal bowel distension and overlapping bowel loops could negatively affect all the radiographic imaging techniques.
Intraoperative Enteroscopy (IE)

IE is usually applied in cases of bleeding that is not localised in spite of extensive diagnostic evaluation and in which the risks of continued bleeding are judged to outweigh the risks of laparotomy. IE can be performed per-orally, trans-nasally, per-rectum, or through single or multiple intestinal incisions. The choice of enteroscope type and entry site will necessarily depend on instrument availability, familiarity with the diagnostic approaches, and the experience and technical expertise of the surgeon and endoscopist.

Esophago-Gastro Duodenoscopy (EGD)

EGD (or upper endoscopy) enables the physician to take inside the oesophagus, stomach, and duodenum (first part of the small intestine).

After an anaesthetic has suppressed the gag reflex, an endoscope is advanced through the oesophagus to the stomach and duodenum. Air is introduced slowly through the endoscope to expand the folds of tissue enhancing view. The internal mucosal surface (lining of the intestines) can be examined and, if the need arises, biopsy samples can be obtained through the endoscope itself. The procedure takes about 30 minutes.

Angiography

Angiography is the x-ray study of the blood vessels. An angiogram uses a radio opaque medium to highlight the blood vessels in a fluoroscopy suite. This examination is usually performed at a hospital, in an x-ray or fluoroscopy suite, by a radiologist and assisting technician or nurse. Angiography requires the injection of a contrast medium that makes the blood vessels visible to x-rays. The patient’s vascular system is displayed on a monitor in real-time.

Angiograms can vary depending on the vascular system being studied. For examination of the small bowel, the procedure is called mesenteric angiography and involves x-ray exploration of the celiac and mesenteric arteries, the arterial branches that supply blood to the abdomen and digestive system.

The test is commonly used to detect aneurysm, thrombosis, and signs of ischemia in the celiac and mesenteric arteries, and to locate the source of gastrointestinal bleeding. The procedure can take up to 3 hours, depending on the number of blood vessels studied (Gale Encyclopaedia).

Mesenteric angiography can detect active bleeding but is often considered unsatisfactory and infeasible for the investigation of OGIB because of its highly variable diagnostic yield and risk of complications (Saperas 2007).

Patients with kidney disease or injury may suffer further kidney damage from the contrast mediums used for angiography. Pregnant women are advised to avoid this procedure because x rays carry risks of ionizing radiation exposure to the foetus.
Bibliography

http://www.olympusamerica.com

www.doubleballoonenteroscopy.com/procedure.html

http://www.fujinonendoscopy.com/default.aspx?pageid=1

Gale Encyclopedia of Medicine, Published December, 2002 by the Gale Group.

APPENDIX 3

Search Strategy

EMBASE:

#1. ‘capsule endoscopy’/syn OR ‘video *1 capsule’ OR ‘wireless *1 capsule’ AND
(cochrane
review)/lim OR [controlled clinical trial]/lim OR [meta analysis]/lim OR [randomized con-
trolled
trial]/lim OR [systematic review]/lim) AND [humans]/lim AND [embase]/lim

PUB MED:

#9 Search “Capsule Endoscopy”[Mesh] OR Video capsule*[Title/Abstract] OR “wireless
capsule”[Title/Abstract]

CL:

video next capsule* in All Text; WCE in Title, Abstract or Keywords; “Capsule
Endoscopy” in Title,

Abstract or Keywords; wireless next capsule* in All Text
Appendix 4

Table A: OGIB_WCE versus PE

<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Design</th>
<th>Time range and/or follow up</th>
<th>Participants</th>
<th>Diagnostic accuracy</th>
<th>Safety*</th>
<th>Acceptability</th>
<th>Conclusions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mylonaki M. et al. 2003, UK (London)</td>
<td>To compare efficacy and clinical impact of WCE vs PE in patients with OGIB and negative gastroscopy and colonoscopy. The limitations, technical failures and practical issues of using WCE were explored.</td>
<td>A prospective blinded study: Fifty two patients were enrolled. Two were lost (reasons reported). They all had had colonoscopy and gastroscopy, and most of them had undergone multiple procedures. They had WCE within two weeks before undergoing PE. All gastric abnormalities detected by WCE can be confirmed by PE. The colonic abnormalities were treated with subsequent colonoscopy. WCE was performed and reported by different examiners unaware of the findings of the other examination. Two endoscopists carried out PE and a physician administered WCE and read images. Two reviewers examined all WCE images, and a third endoscopist arbitrated on any discrepancies in the interpretation of findings. A further group of 40 volunteers was also enrolled before the beginning of the study to acquire information on the normal appearance of the small bowel with WCE and PE.</td>
<td>Time range: WCE within 2 weeks before PE. Follow up: two weeks or more (not specified)</td>
<td>Fifty patients (21 male, 29 female). Average age 50.3 (range 17-80). They all had had colonoscopy and gastroscopy, and most of them had undergone multiple procedures. Forty seven were transfused, 15 of them had more than 100 units of blood, 15 more than 400 units.</td>
<td>WCE diagnostic yield in small intestine was 68% (34/50) (angiodysplasia (16), fresh faecal bleeding (8), aphthous ulceration suggestive of Crohn's disease (3), tumour (2)). The WCE total diagnostic yield was 76% (38/50). The yield of PE in discovering the source of obscure bleeding was 32% (16/50). The total diagnostic yield of PE was 38% (19/50).</td>
<td>Method: not clearly reported. At follow up all patients were interviewed and asked to compare WCE and PE painfulness and which was they preferred. Results: WCE was preferred to PE: 49/50; WCE was uncomfortable for swallowing 2/50; PE is painful (34/50, p<0.05).</td>
<td>The authors claim that this study shows that the WCE can provide small intestinal imaging comparable with PE and can diagnose sites of intestinal bleeding beyond the reach of PE. WCE was safe, painless and well tolerated.</td>
<td>This is not a randomised trial, and patients served as their own control. PE is defined as an unfair comparator since it does not reach the lower small intestine.</td>
<td></td>
</tr>
<tr>
<td>Mata et al. 2004</td>
<td>Spain (Barcelona)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>To examine the diagnostic precision and the clinical efficacy of WCE compared with PE in OGB and to analyse the impact of WCE findings on the therapeutic approach of OGB patients.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A prospective study. Forty two consecutive patients with OGB (overt bleeding in 26 patients and occult in 16), normal EGD and colonoscopy with ileoscopy. 22 men, 20 women. Mean age 55 years, range 16-84.

Data recorded at the moment of inclusion are reported (e.g. haemoglobin, haematocrit, number of blood transfusions). Exclusion criteria reported (pregnancy, pacemaker etc.).

Time range: PE within a week after WCE. Follow up: not reported

WCE diagnostic yield: (74%) 31/42, (angiodyplasia > fresh blood without lesions) PE diagnostic yield: (19%) 8/42. Successful change in therapeutic approach in 7 patients. Most of the findings detected by WCE were located at distal jejunum and ileum, probably out of reach of the enteroscope.

WCE TP: In 3 patients (7%) WCE did not reach the ileocecal valve by the end of the recording time; AE: Among the 3 patients, 1 retained asymptomatic WCE for 48 days (natural expulsion); In 1 patient (2%) WCE was removed by laparoscopy due to jejunal stricture; 1 patient not accounted for. PE - No complication

Method: not reported. Results: well tolerated by all patients.

WCE is non invasive and painless, with a good diagnostic yield in OGB. It is superior to PE in diagnosing small bowel lesions. If compared with PE, WCE increases the diagnostic yield in patients with OGB and allows modification on therapy strategy in a high proportion of patients. It led to a change in treatment strategy in 7/31 patients (22%) (with no recurrence at follow up) with positive findings. All patients could be assigned to a specific therapy: 2 with medical treatment (Cohn), 2 with endoscopic therapy (jejunal angiodyplasia), 3 surgery (1 Cohn and 2 tumours in ileum). Only two of the 12 diagnosis of angiodyplasia were effectively treated. The authors suggest that WCE should be used first choice after a negative upper and lower conventional endoscopy and PE should be used in cases with positive WCE findings located at the proximal small bowel within the reach of enteroscopy. Finally enteroscopy could also be considered in patients with negative CE findings.

This is not a randomised trial, and patients serve as their own controls. The main aim of this study, given that PE is not a fair comparator should have been how WCE changed treatment strategy.
<table>
<thead>
<tr>
<th>Time range: not reported. Follow up: 11-24 months, but only for patients who received care at the centre subsequent to the procedure.</th>
<th>Diagnostic yield of WCE. Definitive sources of bleeding in the small bowel were identified by WCE in 6 out of 20 patients (30%) and only two of them were found to have small bowel angioectasias at PE. 5 of them underwent targeted endoscopic or surgical therapy based on WCE and PE findings. The WCE did not affect the management of patients found to have indeterminate lesions.</th>
<th>WCE - No complication PE - No complication</th>
<th>Not reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCE has an impact on long term management of patients with clearly defined lesions (angioectasia, focal ulcer), but doesn't affect the management of patients with less defined lesions. WCE allows the detection of small or trivial lesions that are not evidenced during a standard PE and do not necessarily cause bleeding. The study used the first software version for WCE's which did not provide localization. A large trial with a control arm with normal asymptomatic individuals should be undertaken. The interpreters' reliability was high.</td>
<td>This is not a randomised trial. And presents several factors to be considered a) PE may not be a proper comparator, since it doesn't reach the part of small bowel reached by WCE. b) That a basic requirement of all the studies should be the definition of the kind of lesions (definitive or not) found with WCE vs those found by PE. c) Each study should highlight the changes in the management of patients brought about with or without WCE.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Saurin et al., 2005
FRANCE (Lyon and Paris)

To evaluate the long term outcome in WCE patients and to understand the clinical relevance of lesions detected with WCE. To compare WCE and PE specificity and sensitivity, using previous results in terms of clinical outcome, as a gold standard.

A "follow up study" it involves 58 patients already enrolled in a previous prospective study comparing WCE and PE. Patients were contacted after 1 year, and each case was classified into true/false positive or true/false negative findings at PE and WCE. The results were compared with the initial classification of lesions observed at WCE: highly relevant (P2), and less relevant (P0, P1) lesions.

Time range: PE within 3 days after WCE
Follow up: not reported

Sixty patients, mean age 58 (± 18 years, range 21-79); 27 men and 33 women. 28 patients (47%) presented recurrent overt GI bleeding. Fifty eight patients were eligible.

Diagnostic yield (small bowel lesions with potential for bleeding): CE: 40/60 (67%), 19 patients with lesions both on CE and PE. PE: 22/60 (37%), including 3 patients missed with CE. Sensitivity (95% CI) of WCE 0.92 (0.82-1.00) and PE 0.69 (0.53-0.87) - Specificity (95% CI) of WCE 0.48 (0.32-0.68) and PE 0.80 (0.54-0.94). PPV of WCE 0.62, and of PE 0.75 - NPV of WCE 0.87 and NPV 0.74.

WCE - Not reported
PE - Not reported

WCE is a sensitive examination for the detection of lesions of the small bowel in patients with OGIB, its specificity is lower than that of PE when the clinical outcome is used as the gold standard. Taking into account the relevance of all lesions identified in the small bowel by WCE initial, 15 of 18 were highly relevant lesions (83.3%) were ultimately classified as true positive cases compared with seven of 22 less relevant lesions (31% p=0.0003). The non invasive nature of WCE and its high negative predictive value suggest that it should be used before any therapeutic PE, which might subsequently be required.

This is not a randomised study. It tries to identify a way to determine sensitivity and specificity of WCE vs PE, finding a proper gold standard and avoiding a too strict definition of true positive and false positive cases of others (Pernazao, 2003).

It seems that most of the lesions identified by WCE are small, and the study underlines the problem of lesions not detected because they are out of the area examined by PE. It is unclear whether they calculated specificity and sensitivity referring only to the part of the small bowel that both procedures can reach.
Neu et al., 2005
GERMANY (Hamburg, Munich, Mainz, Altona, Wiesbaden)

To evaluate the influence of WCE findings in the further management of patients (major changes in management), particularly with OGIB. Analysis of outcome changes such as a significant reduction of further bleeding.

A multicenter prospective study carried out in five different tertiary referral centres. The diagnostic yield of WCE was compared to three other tests, PE and Small Bowel Double contrast radiography (SBE) and Selective Abdominal Angiography, but in different sequence according to the centres facilities. An endoscopist with similar experience reviewed WCE videos. WCE results only were unblinded for PE. Patients were followed up for at least 6 months. Parameters that led to major management changes were analysed (e.g. surgical or endoscopy interventions, specific medical therapies) as well as their correlation to further bleeding.

Time range: not reported
Follow up: 6 months

Fifty six patients 17 women and 30 men, mean age 63 years (range 18-82). OGIB (OBD) was an inclusion criteria, being this overt in 37 patients, and occult in 19 patients.

Diagnostic yield of WCE compared to the diagnostic yield of three other comparator tests (OT). WCE detected 42% of lesions with low probability of bleeding, and 58% of lesions with a high probability. PE detected 27% of minor lesions and a 73% of major lesions (tables show results for each single technology and also aggregated results).

WCE - Not reported
PE - Not reported

WCE helps with management decisions and can replace other more complex and risky standard tests. Nevertheless, clinical parameters are equally important for predicting further bleeding and should also be used to decide on further management.

It is not a randomised study. The text states that since visualisation of the small bowel by PE is partial, its DY may have been underestimated. In addition the authors state that WCE often identifies many lesions which are not the cause of bleeding. The study's conclusions are difficult to interpret as the authors discuss aggregate data while presenting data in a disaggregate form.
De Leusse et al., 2007
FRANCE (Paris)

To assess diagnostic yield of WCE vs PE as first line exploration in OGIB; Assess clinical relevance of WCE and PE and accuracy of the exploration.

Prospective randomised trial. All consecutive patients referred for obscure gastrointestinal bleeding were randomised to either WCE or PE as the first-line exploration. The alternative method was only used if the first line method revealed no definite bleeding source, or if required for clinical reasons during follow-up.

Follow up: 12 months

Seventy eight patients, 30 women and 48 men, average age of 54±16 years (range 22-85 years). All patients had undergone other procedures before.

The diagnostic yield of WCE and PE for definite sources of bleeding were 17/40 patients (43%; 95%CI: 13-40) and 4/38 patients (11%; 95%CI: 4-25), respectively for small bowel lesions (P=.02), and for gastric lesions and oesophagus patients (0%; 95%CI: 0-7) and 0/38 patients (0%; 95%CI: 0-14) for colonic lesions. Performances of WCE for all lesions: sensitivity 79 (60-86); specificity 87 (67-90); PPV 88 (75-90) and NPV 77 (50-85). For small bowel lesions: sensitivity 100 (61-100); specificity 90 (77-92); PPV 85 (69-88) and NPV 100 (71-100). Performances of PE for all lesions: sensitivity 41 (30-53); specificity 100 (91-100); PPV 100 (89-100) and NPV 56 (35-72). For small bowel lesions: sensitivity 33 (21-43); specificity 100 (93-100); PPV 100 (83-100) and NPV 62 (41-75). *P=.025 vs WCE. °Corrected for non verified cases.

WCE - 1 patient (1%) refused to swallow the capsule and had it introduced endoscopically; - In 6 patients (9%) the capsule did not reach the caecum. PE - No significant complications

Not reported

This randomised study confirms that WCE has a higher diagnostic yield (DY) than PE in patients with OGIB. The two strategies tested (WCE or PE first one then the other, if negative) were not statistically different in terms of DY, clinical remission rate, therapeutic impact, need alternative exploration during first year. However CE first strategy is simpler and better tolerated as first strategy.

The only proper randomised study of the whole systematic review. It is a very good study. Shortcomings related to the generalisability of the results due to the number of patients enrolled (78) and to the clinical characteristics of patients, which seem to be very specific to French context (see very high haemoglobin levels). Reasons for patients lost to follow up are not reported.
To compare VCE and PE diagnostic yield, safety and toler ance in patients with OGIB. Global diagnostic yield included all lesions detected in the upper GI tract and the visualised gut. Specific diagnostic yield: lesions located beyond reach of EGD. Complication recorder and tolerance assessed by patient’s questionnaire.

Prospective pilot study. Patients underwent VCE first and within 1 week PE. Both procedure were performed blindly.

Time range: VCE first and PE within 7 days.

Twenty one patients with OGIB and negative EGD and colonoscopy (overt bleeding in 5, occult bleeding in 16) 7 men, 14 women Mean age 60 years, range 18-81. The patients enrolled had unexplained chronic iron-deficient anaemia or digestive blood loss after routine investigations.

Global diagnostic yield: VCE 52% PE 61%

Specific diagnostic yield: 20% for both methods

1 patient has the capsule blocked in an appendiceal stump and retrieved by a snare through colonoscopy. Battery failure (BF) in 5/21 patients.

Subjective tolerance of both procedures was good, but slightly better for WCE.

Authors state that this study showed that the main advantage of WCE is that it detects distal lesions which are beyond the reach of the enteroscope. Furthermore many lesions are detected in the upper GI tract of OGIB patients and which are usually underestimated. According to the authors this suggest that WCE should be used after PE or at least after repeating a careful EGD and not as a first line procedure.

*Data from those studies which assess WCE for mixed indications or different diagnostic modalities were included only if they fulfilled our inclusion criteria.

*SAFETY: Adverse events (AE): none, self resolving symptoms (SR: e.g. not swallowing capsule), therapy (T. e.g. Retention of capsule), surgery (S. e.g. Retention of capsule), mortality (M). Technical Problem (TP): failure of battery (BF), battery expired (BE)
Table B: OGIB_WCE versus DBE

<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Design</th>
<th>Time range and/or follow up</th>
<th>Participants</th>
<th>Diagnostic accuracy</th>
<th>Safety*</th>
<th>Acceptability</th>
<th>Conclusions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matsumoto et al. 2005 Japan (Fukuoka)</td>
<td>To compare diagnostic accuracy of WCE vs DBE for small-intestinal pathologies.</td>
<td>Prospective study. A total of 22 patients were enrolled. Thirteen patients with "Overt GIB" and 9 patients with known OGIB and gastrointestinal polyposis were examined using antegrade or retrograde DBE, and the most distal or proximal site in the explored small intestine was marked by a sub mucosal tattoo, to assess if WCE is able to identify it, this allows comparison of its findings with initial DBE. The patients were then evaluated by WCE within 7 days, and if positive to WCE they underwent a second DBE examination with the other approach. The endoscopic findings with DBE and WCE within the reach of the initial DBE were compared. Video images were reviewed by an observer who was blinded to the DBE findings.</td>
<td>Twenty two patients (11 women and 11 men) average age 63 years (range 21-72). Seventeen patients examined by antegrade DBE, 5 patients by retrograde DBE, 22 patients examined by WCE. Eleven patients had overt GI bleeding and severe anaemia with haemoglobin values ranging from 6.0 to 8.3 g/dl (4 patients required 4-12 units of blood transfusion); The tattoo in the small intestine was identified by WCE in each patient. DBE identified positive findings in 12 patients (54.5%) WCE identified positive findings in the area explored by DBE in 8 patients (38.4%), and in the unexplored area in 11 patients (50%). Five of them underwent another DBE which in 2 cases did not discern the small intestinal pathology suggested by the WCE.</td>
<td>The value for diagnosing OGIB is similar in the two procedures for the area reached by DBE. DBE appears to be superior to WCE in the diagnosis of small-intestinal polyps.</td>
<td>NOT REPORTED</td>
<td>The study is also about OGIB and FAP. This is not an RCT and the same group of patients underwent both procedures. The number of patients is very small and they seem to have different clinical characteristics (see overt GIB and haemoglobin levels), although there are no tables reporting clear clinical data of all patients. It is worth highlighting that this study is the only one with a positive conclusion on DBE compared with WCE. Conflict of interest is not declared but, DBE is a procedure proposed and commercialised by a Japanese physician (Yamamoto): it is not a very widespread technology, but was already used in this department.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadithi et al, 2006</td>
<td>Netherlands (Amsterdam)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To compare the detection and diagnostic rate of WCE and DBE in patients with OGIB.

Prospective study. Thirty five consecutive patients with OGIB were offered WCE followed by DBE.

Time range: WCE 7-14 days before DBE. Follow up: median 5 months; range 2-12 months.

Thirty five patients (13 women and 22 men) average age of 63.2 years (range 19-86). All patients had OGIB and had undergone gastroscopy and endoscopy. Clinical characteristics of patients are reported.

Diagnostic detection rate of WCE: 80% (28/35 - not declared), DBE 60% (21/35 - *P*=0.03)

WCE - AE (SR): 2 patients had difficulty in swallowing the capsule (6%);

DBE - AE (SR): 10 patients reported abdominal pain (29%); - (SR) In 2 patients the procedure was interrupted (3%); no reasons given.

Method: questionnaire concerning tolerability during follow up and questions about sore throat or abdominal discomfort, with recording of procedure related problems. Results: DBE was less tolerated than WCE (40% vs 94%, *p*<0.001). No table synthesising data and number of respondents.

Higher detection rates by WCE, but limits are related to its inability to perform conventional endoscopic procedures, while DBE has therapeutic potential. WCE detects all lesions, this may explain the high number of false positives. WCE and DBE are complementary: WCE is a good candidate to be the first diagnostic step in approaching selected patients with OGIB. DBE may verify WCE findings and provide therapeutic options.

This is not an RCT, and the same group of patients undergo both procedures. The number of patients is small and with heterogeneous clinical characteristics.

115
Nakamura et al, 2006 Japan (Nagoya)

To assess the diagnostic and accessibility (entire small bowel) rates of WCE and DBE in patients with suspected small bowel bleeding. To consider the roles and indications of WCE and DBE in small bowel bleeding.

Prospective and blinded study. Thirty-two patients with obscure or overt GI not localised by previous examinations. Patients were underwent WCE and then DBE (possibly with dual approach. DBE the endoscopist was blinded to the results of WCE. Bleeding sources were categorised as either A1 lesions (immediate haemostatic procedures required) or A2 lesions (close observation required). WCE and DBE were evaluated with regard to whether or not they were capable of accessing the entire small bowel and the ability to provide a diagnosis. The access and diagnostic rates were calculated.

Time range: WCE 2 days before DBE.

Thirty-two patients (11 women and 21 men) average age 58.5 years, range 25-85. Clinical characteristics similar. Mean haemoglobin 7.3 g/dl with 22 patients requiring transfusion and some receiving treatment. Exclusion criteria declared.

Access rate to entire small intestine: WCE 90.6% (29/32) DBE 62% (10/16 p<0.05). Diagnostic rate: WCE 59.4% (19/32), DBE 42.9% (12/28 p=0.30).

WCE - No complications
DBE - 1 patients declined DBE (3%) NOT REPORTED

In many cases of suspected small bowel bleeding WCE should be selected for the initial diagnosis and DBE for treatment or histopathologic diagnosis after detection of the bleeding site by WCE. However if it is suspected that the bleeding site is located in the distal ileum, DBE may be chosen initially, as WCE is unable to achieve this due to food residues or battery failure.

This is not an RCT and the same group of patients underwent both procedures; the number of patients is small; Not clear why DBE should be used for distal ileum suspected lesions: the indication seems to be that DBE identified a Meckel’s diverticulum in the distal ileum, and a colon cancer.
| Time range | Two hundred and eighteen patients were categorised into two groups undergoing either CE or DBE. Among the 165 patients (94 male, 71 female; age range 50-67 years) undergoing CE first, 101 cases had obscure gastrointestinal bleeding and 64 cases had obscure abdominal pain or diarrhoea. Fifty-three patients (32 male, 21 female; average age 46.8 years, range 18-75 years) underwent DBE first; including 15 cases with obscure gastrointestinal bleeding and 38 with obscure abdominal pain or diarrhoea. |

| Detection rate - overall: WCE 72% (118/164), DBE 41.2% (21/51); Diagnostic accuracy - overall: WCE 51.8% (85/164) DBE 39.2% (20/51). Detection rate - OGIB: WCE 88% (88/100) DBE 60% (60/100); P=0.0054; Diagnostic accuracy - OGIB: WCE 65% (65/100) DBE 39% (39/100). |

| Detection rate - overall: WCE 72% (118/164), DBE 41.2% (21/51); Diagnostic accuracy - overall: WCE 51.8% (85/164) DBE 39.2% (20/51). Detection rate - OGIB: WCE 88% (88/100) DBE 60% (60/100); P=0.0054; Diagnostic accuracy - OGIB: WCE 65% (65/100) DBE 39% (39/100). |

| WCE | - 2 patients retained the capsule at lower oesophagus and one of them renounced continuing the examination - 5 patients retained capsule (T) - 2 of them underwent surgical removal (S) - Capsule had not reached the caecum by the end of the recording time in 44 patients (BE) DBE - 39 patients reported discomfort after DBE (SR) - 2 patients failed to complete the DBE (due to partial gastrectomy)(SR) |

| NOT REPORTED | The detection rate of small bowel diseases with DBE is relatively lower than that with WCE. The two procedures are complementary: WCE as initial diagnostic approach for suspected small bowel diseases especially for OGIB. With regard to the relatively high indefinite diagnostic rate (28%) of small bowel disease and the inability to provide diagnostic sampling, DBE still appears to be a viable instrument to complete and/or confirm the negative and indefinite diagnosis made by WCE. |

Detection and Diagnostic Accuracy

To evaluate the detection rate and diagnostic accuracy of WCE and DBE alone and combined, for patients with suspected small bowel disease.

Prospective "categorised" study. A total of 218 patients in whom it had not been possible to determine causes of OGIB, abdominal pain or diarrhoea using conventional diagnostic procedures, were categorised into 2 groups undergoing both WCE and DBE. Patients with negative or equivocal findings on WCE underwent DBE and vice versa.

Time range
- DBE/WCE (if negative, then the alternative): mean interval time between CE and DBE was 12.9 days (2-50 days). Follow up: not reported (just 3 patients negative to DBE were followed for 6 months)

WCE
- 2 patients retained the capsule at lower oesophagus and one of them renounced continuing the examination - 5 patients retained capsule (T) - 2 of them underwent surgical removal (S) - Capsule had not reached the caecum by the end of the recording time in 44 patients (BE) DBE - 39 patients reported discomfort after DBE (SR) - 2 patients failed to complete the DBE (due to partial gastrectomy)(SR)

DBE
- 39 patients reported discomfort after DBE (SR) - 2 patients failed to complete the DBE (due to partial gastrectomy)(SR)

Detection rate - overall:
- WCE 72% (118/164), DBE 41.2% (21/51)

Diagnostic accuracy - overall:
- WCE 51.8% (85/164) DBE 39.2% (20/51)

Detection rate - OGIB:
- WCE 88% (88/100) DBE 60% (60/100)

Diagnostic accuracy - OGIB:
- WCE 65% (65/100) DBE 39% (39/100)

Followup:
- Not reported (just 3 patients negative to DBE were followed for 6 months)
<table>
<thead>
<tr>
<th>Gay 2006, FRANCE (Nancy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To assess if the combined use of WCE followed by DBE can be effective in selecting patients in whom DBE was indicated. The secondary aim was to assess if DBE reaches lesions identified by WCE, safety and tolerability of the combined approach.</td>
</tr>
<tr>
<td>This is a prospective study. Patients with a suspected intestinal disease and a validated indication for WCE were included. All patients investigated with WCE, showing a lesion which recalled more investigation, underwent DBE. Due to the high negative predictive value of WCE, patients with a negative WCE did not undergo further investigation.</td>
</tr>
<tr>
<td>Time range: all DBE procedures were performed between 48 and 120 hours (2-4 days) after the WCE. Follow up: 3/12 months</td>
</tr>
<tr>
<td>A group of 160 consecutive patients. Half of them underwent only WCE, while 42 had DBE (4 underwent DBE only). The group was composed of 87 OGIB cases, 17 suspected tumour, 13 Crohn’s disease, Celiac disease 12, FAP 10, others 21. Average age 54±18.</td>
</tr>
<tr>
<td>Diagnostic yield of WCE 75%</td>
</tr>
<tr>
<td>WCE - No "major" complications due to the procedure.</td>
</tr>
<tr>
<td>DBE - No "major" complications due to the procedure or anaesthesia.</td>
</tr>
<tr>
<td>Method: not reported</td>
</tr>
<tr>
<td>Results: Mild, transient abdominal discomfort in 2 patients who complained of bloating.</td>
</tr>
<tr>
<td>The use of WCE as a filter for DBE results in effective management of patients with various intestinal diseases.</td>
</tr>
<tr>
<td>The study involved patients with various indications for small bowel investigation, such as OGIB (the majority also had suspected Crohn’s Disease, Coeliac Disease, neoplasms). The objective is not to compare the WCE’s diagnostic accuracy versus DBE. The superiority of WCE is assumed on the basis of the evidence provided by previous studies (see, p. 50 of the article), which show also that its limitation is related to its purely visual diagnostic nature. It appears that the visualisation offered by WCE, in many cases, is sufficient to allow a diagnosis. It is not clear how the diagnostic accuracy of WCE was calculated.</td>
</tr>
<tr>
<td>Study</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Costamagna et al. 2002</td>
</tr>
</tbody>
</table>

The study is about OGIB, suspected Crohn’s disease and Familiar Adenomatous Polyposis. (Considering Crohn’s disease and FAP the number of patients was less than 10) It is not clearly stated which other diagnostic procedure was used for OGIB patients. Data in the text did not correspond with data in tables.
Hara et al. 2003
Location not reported

<table>
<thead>
<tr>
<th>To compare WCE findings with barium studies or computed tomography (CT) in patients with no evidence of small bowel stricture at barium examination.</th>
</tr>
</thead>
</table>

| CT and barium studies
This is a retrospective study. Fifty two patients underwent WCE, subsequently 36 underwent SBFT, 4 enteroclysis, and 19 CT of abdomen and pelvis. Imaging results were retrospectively reviewed and compared with WCE, standard endoscopy, and surgical results. A radiologist, who was not blinded to the WCE results, retrospectively reviewed discrepancies between WCE and imaging examinations. Proportion of positive findings at WCE was compared with proportion of positive findings at barium studies and CT in the same patients. Statistical significance was calculated with McNemar statistic.
| Time range: Barium studies and/or CT within 6 months (either before or after) of CE.
Fifty two patients, 31 men, average age 64 years, range 21-92 and 21 women, average age 63 years, range 28-80 years. Forty three patients underwent WCE for OGIB
Barium examination findings were positive in one (3%) of 40 patients; WCE findings were positive in 22 (55%) (P<0.001). CT demonstrated small-bowel findings in four (21%) of 19 patients, but WCE demonstrated findings in 12 (63%) of 19 patients (P=0.02). The most common CE findings, angioectasia (11 cases), was not detected at any imaging study. More ulcers (8) were detected with WCE than with barium study (one of eight) and CT (three of six). At WCE, three of five surgically confirmed masses (carcinoid, intussusceptions, lymphangioma) were identified, but two jejunal tumours were not detected in a patient with poor bowel preparation. At barium study, no masses (zero of five) were detected; at CT, one of four masses was detected.
Note: The time range between one diagnostic examination and another is not clear.
In patients without a small-bowel stricture at barium study, more small-bowel diseases were found with WCE when findings were retrospectively compared with barium examination and CT findings. Nevertheless lesion localisation and evaluation can be difficult with WCE that cannot measure abnormality or control the camera when the abnormality when identified. It is difficult to localise precisely the abnormality detected after WCE.
NOT REPORTED
NOT REPORTED |
<table>
<thead>
<tr>
<th>Study</th>
<th>Country (City)</th>
<th>Objective</th>
<th>Scope</th>
<th>Methodology</th>
<th>Participants</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golder et al., 2006 Germany (Regensburg)</td>
<td>To assess the diagnostic yield of WCE with MR enteroclysis in the detection of small bowel pathologies.</td>
<td>MR enteroclysis This is a prospective study. A total of 36 patients were included in the study. Indications for imaging of the small bowel were: proven or suspected small bowel Crohn’s disease, obscure gastrointestinal bleeding and tumour surveillance. There were 14 patients with OGIB, 18 with CD, and 2 suspected CD. The remaining patients had PAP and tumours. Differences in the detection of pathological findings in the small bowel were calculated using the McNemar test. A p value of <0.05 was considered significant.</td>
<td>Time range: not reported</td>
<td>Thirty six patients (19 women and 17 men) average age 47 years, range 18-84.</td>
<td>Az yield: Upper small bowel 77.1 WCE (27/35) MR 72.2 (26/36); Middle small bowel WCE 62.9 (22/35) MR 77.8 (28.36); Lower small bowel WCE 37.1 (13/35) MR 77.8 (28/36).</td>
<td>Malfunctioning of WCE. in 1 patient</td>
<td>The results demonstrate that WCE is superior to MR for Crohn’s disease when considering the first and second section of the small bowel, but not for third section.</td>
</tr>
<tr>
<td>Saperas et al., 2007 Spain (Barcelona)</td>
<td>Comparison of the diagnostic yields WCE vs Computed Tomography (CT) or Standard Angiography (ANGIO) in patients with OGIB.</td>
<td>Computed Tomography (CT) or standard mesenteric angiography (ANGIO) This is a prospective study. Consecutive patients admitted for OGIB underwent both CT and ANGIO, followed by WCE performed blindly by independent examiners within the following 7 days.</td>
<td>Time range: WCE within 7 days</td>
<td>Twenty eight patients (12 women and 16 men) average age 74 years, range 36-85.</td>
<td>Az yield: Upper small bowel 77.1 WCE (27/35) MR 72.2 (26/36); Middle small bowel WCE 62.9 (22/35) MR 77.8 (28.36); Lower small bowel WCE 37.1 (13/35) MR 77.8 (28/36).</td>
<td>NOT REPORTED</td>
<td>WCE detected more lesions than CTA or ANGIO in patients with OGIB.</td>
</tr>
<tr>
<td>Hartmann et al. 2005 Germany (Berlin)</td>
<td>To compare diagnostic yield of WCE vs Intraoperative Enteroscopy (IE)</td>
<td>Intraoperative Enteroscopy (IE) This is a prospective study. Forty seven consecutive patients with obscure GI bleeding from two gastroenterology centres were included. The standard evaluation of these patients included upper endoscopy, colonoscopy with a retrograde examination of the distal ileum, and push enteroscopy.</td>
<td>Time range: WCE and after 6 days IE</td>
<td>Forty seven patients (17 women and 30 men) average age of 61±17 years, range 18-88.</td>
<td>Az yield: WCE overt ongoing bleeding 100% (11/11) overt previous bleeding 67.0% (16/24) occult bleeding 67.0% (8/12); IE overt ongoing bleeding 100% (11/11) overt previous bleeding 70.8% (17/24) occult bleeding 50.0% (6/12);</td>
<td>WCE IE: AE (M): 1 patient died of peritonitis after laparotomy.</td>
<td>WCE diagnostic yield varies according to the type of bleeding. Authors suggest the use of WCE for patients with OGIB, iron deficiencies, and for those negative to bidirectional endoscopy. Not an RCT. NPP and PPV were calculated. But the IE was used as the reference standard.</td>
</tr>
</tbody>
</table>

*Data from those studies which assess WCE for mixed indications or different diagnostic modalities were included only if they fulfilled our inclusion criteria.

*Safety: Adverse events (AE): none, self resolving symptoms (SR; e.g. not swallowing capsule), therapy (T. e.g. Retention of capsule), surgery (S. e.g. Retention of capsule), mortality (M). Technical Problem (TP): failure of battery (BF), battery expired (BE)
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Comparator</th>
<th>Design</th>
<th>Time range and/or follow up</th>
<th>Participants</th>
<th>Diagnostic accuracy</th>
<th>Safety</th>
<th>Acceptability</th>
<th>Conclusions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buchman et al. 2004, USA (Chicago)</td>
<td>To compare the diagnostic yield of the WCE with SBFT and Enteroclysis in CD patients.</td>
<td>SBFT</td>
<td>This is a prospective blinded study. The gastroenterologist was not aware of the SBFT results. Consecutive patients with suspected recurrence of CD on the basis of abdominal pain, diarrhoea, anaemia, and/or arthralgias. SBFT was performed and those patients with strictures and proximal bowel dilatation were excluded. For SBFT, results were graded normal (0), 1 (<5 cm), 2 (<5-10), 3 (>10 cm). For WCE were graded normal (0), 1 (erythema, isolated villi loss), 2 (erosion, no ulcer), 3 (ulcers, spontaneous bleeding, and/or stricture).</td>
<td>Time range: SBFT and WCE after 1 week. Follow up: NOT REPORTED</td>
<td>Thirty consecutive patients with clinically suspected CD recurrence 22 female, 8 male. Mean age 36.9 years, range 21-80.</td>
<td>Active CD was visualised in 21 of 30 patients with WCE and in 20 of 30 with SBFT. Complete agreement occurred in 13 of 30 patients. In 13 of 17 scores differed by 1 grade.</td>
<td>SR: In 2 (7%) patients WCE was retained for respectively, 9 months and 3 weeks.</td>
<td>Method: a multiple choice patient's satisfaction questionnaire administrated to all once WCE was completed. All questions and answers are reported in text. Results: WCE is the preferred procedure compared to SBFT.</td>
<td>Results suggest that WCE and SBFT have similar sensitivity and accuracy for the diagnosis of CD. The time range between the two procedures is quite short and pathology is not supposed to change. Authors state that WCE has been shown to be a safe and effective tool for the diagnosis of CD involving the small intestine. Capsule retention is greater in patients with CD. According to the authors this, in some cases, rather than a complication, should be viewed as diagnostic tool. The study is not a randomised trial, it is a study with many shortcomings. Patient acceptability: among the reported questions there is one which addresses this issue. The authors report that WCE is the preferred method, and that is less invasive and time consuming. Those two last sentences are not supported by evidence from the questionnaire survey and seem to be author's assumptions. No results tables are reported for any dimension. The abstract states that "twelve patients were excluded for small bowel obstruction", but text and data are not consistent with this. Some of the author's conclusions are not supported by data.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Type of Study</td>
<td>Methods</td>
<td>Patients Description</td>
<td>Diagnostic Yield</td>
<td>Complications</td>
<td>Conclusion</td>
<td>Randomised Trial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliakim et al. 2004</td>
<td>Israel</td>
<td>Prospective blinded study</td>
<td>SBFT, Entero-CT</td>
<td>Thirty-five patients with suspected Crohn's Disease (3 female, 22 male, mean age 28.4 years)</td>
<td>WCE: 27/35 (77%), confirmed radiological findings in 9 patients, extended involvement in 6 and ruled out the radiological suspicion of CD in 10 (all confirmed by ileoscopy)</td>
<td>No harms were observed both during and after the procedure.</td>
<td>WCE superior and more sensitive diagnostic tool than SBFT and entero-CT in suspected Crohn's disease.</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voderholzer et al., 2005</td>
<td>Germany</td>
<td>Prospective study to assess WCE vs CT enteroclysis</td>
<td>CT Enteroclysis</td>
<td>Fifty-six consecutive Crohn's Disease patients (15 excluded for strictures)</td>
<td>Jejunal or ileal Crohn's Disease lesions: WCE: 25/41 (61%), CT enteroclysis: 12/41, 8/41 with large lesion, missed terminal/neo terminal ileum Crohn's Disease lesions. WCE: 24/41 (43%), CT enteroclysis: 20/41.</td>
<td>CT enteroclysis - No complication. WCE - 2 patients retained the WCE (5%), 1 of whom had abdominal pain for 3 days and underwent anti-inflammatory treatment, before the capsule was passed. 1 of them had jejunal stenosis not detected with CT and had no pain. Capsule was removed with PE. 1 more patient (2%) had to repeat the WCE since the capsule's battery expired while it was still in the stomach.</td>
<td>WCE improves the diagnosis of small bowel Crohn's disease. WCE changed therapeutic path.</td>
<td>Not</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albert 2005, GERMANY (Halle, Saale)</td>
<td>To assess diagnostic yield of WCE in Crohn’s disease. Blind operators</td>
<td>Fluoroscopy, MRI, Enteroclysis</td>
<td>Fifty two consecutive patients were investigated by MRI, fluoroscopy and if there was no bowel obstruction with WCE.</td>
<td>Time range: MRI and Enteroclysis followed by WCE within 10 days (in 1 patient: 6 weeks. Follow up: NOT REPORTED)</td>
<td>Eighty one with suspected Crohn’s disease 52 eligible aged 18 to 72.</td>
<td>Diagnostic yield: CE 13/14 92.9%, MRI 11/14 78.6%. BUT enteroclysis vs MRI and enteroclysis vs CE (0.01 and 0.002); Pt comfort, safety MRI - 2 patients (8%) had claustrophobia and 1 patient (4%) refused to undergo MRI. WCE - 1 patient (4%) retained capsule in a small bowel stricture undetected on abdominal ultrasound and Enteroclysis.</td>
<td>WCE and MRI complimentary techniques.</td>
<td>Not a randomised trial.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| HoChong et al., 2005 AUSTRALIA (Melbourne) | To compare diagnostic yield of WCE vs PE and Enteroclysis in two groups. Group 1 history of Crohn’s disease; Group 2 no history of Crohn’s disease. | PE, Enteroclysis | Patients who were suspected to have small-bowel Crohn’s disease were prospectively evaluated with push enteroscopy, enteroclysis, and capsule endoscopy. Each examiner was blinded to results of other investigations. Referring doctors were required to complete a questionnaire before and after the investigation. | Time range: WCE 2 weeks after PE and enteroclysis if no stricture detected. | Group 1: 22 patients (17 women and 5 men) average age of 39.8 years (range 17-78). Group 2: 21 patients (11 women and 10 men) average age of 35 years (range 20-80). | In group 1: WCE detected more erosions than the other two examinations (p<0.001) In group 2: a new diagnosis of Crohn disease there was no significant difference yield compared with PE and Enteroclysis | WCE - 1 patient (5%) was unable to swallow the capsule and endoscopic placement in the duodenum was required. PE - No complication Enteroclysis - Failed in 6 patients (29%) | WCE has a higher yield than PE and Enteroclysis in patient with Crohn’s disease when small-bowel mucosal disease is suspected |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Method</th>
<th>Participants</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golder et al. 2006, Hartmann et al. 2005, GERMANY (Berlin)</td>
<td>To assess the diagnostic yield of WCE with MR enteroclysis in the detection of small bowel pathologies.</td>
<td>This is a prospective study. A total of 36 patients were included in the study. Indication for imaging of the small bowel were proven or suspected small bowel Crohn's disease, obscure gastrointestinal bleeding and tumor surveillance. Patients were 14 with OGIB, 16 with CD, and 2 suspected CD, remaining patients had FAP and tumors. Differences in the detection of pathological findings in the small bowel were calculated using the McNemar test. A p value of <0.05 was considered significant.</td>
<td>Thirty six patients (19 women and 17 men) average age of 47 years (range 18-84)</td>
<td>Yield: Upper small bowel WCE 77.1 (27/35) MR 72.2 (26/36); Middle small bowel WCE 62.9 (22/35) MR 77.8 (28/36); Lower small bowel WCE 37.1 (13/35) MR 77.8 (28/36).</td>
<td>WCE: TP in 1 patient there was a malfunctioning of WCE.</td>
</tr>
</tbody>
</table>

*Data from those studies which assess WCE for mixed indications or different diagnostic modalities were included only if they fulfilled our inclusion criteria.

*SAFETY: Adverse events (AE): none, self resolving symptoms (SR: e.g. not swallowing capsule), therapy (T. e.g. Retention of capsule), surgery (S. e.g. Retention of capsule), mortality (M). Technical Problem (TP): failure of battery (BF), battery expired (BE)
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Comparator</th>
<th>Design</th>
<th>Time range and/or follow up</th>
<th>Participants</th>
<th>Diagnostic accuracy</th>
<th>Safety</th>
<th>Acceptability</th>
<th>Conclusions</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caspari et al 2004, GERMANY (Bonn)</td>
<td>To compare Magnetic Resonance Imaging (MRI) and WCE for the detection of small-bowel polyps in patients with inherited polyposis syndrome.</td>
<td>MRI</td>
<td>Prospective blinded study. Twenty consecutive patients were enrolled. An upper GI endoscopy was performed in all. First was given MRI to see if any stricture was present in order to withdraw patients from study. The number, size, and location of polyps were analysed and data compared. Blinded evaluators for MRI and WCE.</td>
<td>Time range: MRI and the day after WCE Follow up: NOT REPORTED</td>
<td>20 consecutive patients, 14 male, 6 female, 4 with Peutz-Jeghers syndrome (PJS) and 16 with familial adenomatous polyposis (FAP).</td>
<td>Polyps divided by size into 4 groups: 0-5mm, >5-10 mm, >10-15 mm, and >15 mm. MRI: 448 polyps identified in 8 patients; WCE: 448 polyps identified in 8 patients. MRI: 24 polyps identified in 4 PJS patients. group 1 only detected using WCE; 2nd group: more often detected using WCE; third group: equally well detected. For very large polyps WCE provided only a partial view. MRI identified 2 desmoid tumours in FAP patients CE identified active bleeding areas in PJS patients Relevance of the many small polyps identified in PJS was not clear Both MRI and CE may be adequate for small-bowel screening in PJS patients.</td>
<td>NOT REPORTED</td>
<td>NOT REPORTED</td>
<td>Polyps larger than 15 mm were detected both by MRI and WCE, whereas ONLY WCE detected those smaller than 5 mm. However, location of the detected polyps and determination of their exact sizes was more accurate by MRI and WCE can give more false positive and false negative results. FN are due to impaired visualisation or excessively rapid propulsion of capsule and FP due to retropropulsion of capsule causing the same polyp to be recorded twice or more. WCE cannot give the exact size and location of the polyp. Duodenal polyp clustering around papilla of Vater could not be seen by WCE, since this is often obscured by bile.</td>
<td>Not a RCT. The large amount of polyps identified by WCE may be due to the capsule camera that records twice or even several times the same polyp.</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Objective</td>
<td>Design</td>
<td>Time range: PE and WCE</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schulman et al. 2005</td>
<td>Germany</td>
<td>To determine the efficacy and safety of WCE and PE in patients with FAP. The aim was the same for patients with Peutz Jegers Syndrome but the comparators were not only PE, but also EGDS, MR enteroclysis, and surgical specimen.</td>
<td>Prospective study. Forty consecutive patients with hereditary polyposis syndromes were prospectively examined. Results were compared with push-enteroscopy (PE) results in FAP and with esophagogastroduodenoscopy, PE, (MR) -enteroclysis, and surgical specimen in PJS patients.</td>
<td>Forty consecutive patients, 29 patients with FAP (17 men, 12 women; median age 42 years; range 15-56) and 11 with Peutz-Jeghers Syndrome (2 men, 9 women; median age 34 years; range 23-58).</td>
<td>Twenty one of 29 (76%) FAP patients had duodenal polyps on EGD and duodenoscopy, WCE missed 2; 16 of the 21 patients also had polyps in the distal jejunum and ileum detected only by WCE; 10 of the patients had polyps located only in the distal jejunal or ileal area, and detected by WCE. WCE detected polyps in 10/11 patients with Peutz-Jeghers Syndrome, a rate superior to all other reference procedures employed.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wong et al., 2006</td>
<td>USA</td>
<td>To assess WCE vs PE in the surveillance of FAP, for the diagnosis of small bowel polyps in individuals with FAP.</td>
<td>Prospective study, BUT the design is not clear (see comments). Participants with FAP selected on the basis of the high number of proximal small bowel polyps and prior endoscopic tattoo placement in the proximal small bowel. Patients returned for follow-up (upper endoscopy) approximately 1 year later, and eligible patients were enrolled in the study. Exclusion criteria included the inability to provide informed consent, contraindications to endoscopy, known or suspected bowel obstruction, stricture, cardiac pacemaker, pregnancy, or incarceration.</td>
<td>Thirty two patients (19 men and 13 women) average age of 45 years (range 26-73).</td>
<td>Two WCE readers detected a median of 9 (interquartile range (IQR), 5.0-19.0) and 10 polyps respectively. WCE- 6 patients (19%) retained the capsule which was removed endoscopically the day whilst performing the comparative procedure. Almost half of the batteries expired (TP).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Data from those studies which assess WCE for mixed indications or different diagnostic modalities were included only if they fulfilled our inclusion criteria.

Safety: Adverse events (AE): none, self resolving symptoms (SR: e.g. not swallowing capsule), therapy (T. e.g. Retention of capsule), surgery (S. e.g. Retention of capsule), mortality (M). Technical Problem (TP): failure of battery (BF), battery expired (BE)
<table>
<thead>
<tr>
<th>Study</th>
<th>Aim</th>
<th>Design</th>
<th>Indication</th>
<th>Comparator</th>
<th>Participants</th>
<th>Results</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marmo et al. 2005</td>
<td>Systematic review - To determine the diagnostic yield and safety of capsule endoscopy vs. alternative diagnostic modalities</td>
<td>A search for the prospective studies comparing capsule enteroscopy vs. other diagnostic tests in adults was performed between 1996 and 2005. Selected studies were included in a meta-analysis. Three analyses were run separately, the studies had occult gastrointestinal bleeding or Crohn's disease as main outcome.</td>
<td>OGB, Chron's disease</td>
<td>VCE vs PE in 8 studies, SBFT in 6 studies, CT enteroclysis</td>
<td>326 patients were evaluated (289 submitted to CE for OGB, 237 submitted to CE for Known or suspected Crohn's Disease)</td>
<td>Seventeen studies met inclusion criteria. The rate difference between capsule endoscopy and alternative modalities for small bowel disease was 41% (95% CI 35.6-45.9); 37% (95% CI 29.6-44.1) for occult gastrointestinal bleeding; and 45% (95% CI 30.9-58) for Crohn's Disease. Failure to visualise the caecum occurred in 13% significantly more often in occult bleeders (17%) than in patients with Crohn's Disease (8%) (P<0.006). Adverse events were recorded in 29 patients (6%). Capsule retention was more frequent in patients with Crohn's Disease (3%) vs. 1% OR 4.37.</td>
<td>VCE proved significantly superior to push enteroscopy and small bowel radiology in the diagnosis of ileal disease.</td>
</tr>
<tr>
<td>Triester et al. 2006</td>
<td>Meta analysis Evaluate diagnostic yield of CE vs SBFT (small balloon follow through); CTE (CT enterography); C+I (colonoscopy with ileoscopy); PE; EC enteroclysis; Small bowel MRI for chron disease diagnosis.</td>
<td>To perform a recursive literature search of prospective studies comparing the yield of CE to other modalities in patients with suspected or established Crohn's Disease. Data on Yield among various modalities were extracted, pooled, and analysed. Incremental yield (yield of CE-yield of comparative modality) and 95% confidence interval (95% CI) of CE over comparative modalities were calculated. Sub analyses of patients with a suspected initial presentation of Crohn's Disease and those with suspected recurrent disease were also performed</td>
<td>Chron's disease</td>
<td>SBFT (small balloon follow through); CTE (CT enterography); C+I (colonoscopy with ileoscopy); PE; EC enteroclysis; Small bowel MRI for chron disease diagnosis.</td>
<td>Eliakim 2004: 35 patients; Hara 2005: 17; Bloom 2003: 19; Buchman 2004: 30; Costamagna 2002: 3; Dubenenco 2004: 31; Toth 2004: 47; Chong 2005: 37; Marmo 2005: 31; Golder 2005: 18; Voderholzer 2005: 41.</td>
<td>9 studies (N=250): yield for VCE vs BR (40%; p<0.01); 4 trials (N=114): yield for VCE vs C+I (61% e 46%, IY 15%; p<0.01); three studies (n=93) VCE vs CT enterography (69% e 30%, IY -38%, p<0.001. Two trials VCE vs PE (IY 38%, p<0.01); one trial VCE vs MRI (IY-22%, p=0.16)</td>
<td>VCE superior to all modalities for diagnosing of non stricturing small bowel CD, with a number needed to test (NNT) of 3 to yield one additional diagnosis of CD over small bowel barium radiography and NNT= 7 over colonoscopy with ileoscopy.</td>
</tr>
</tbody>
</table>
Appendix 5

Tables on WCE Safety

<table>
<thead>
<tr>
<th>Study on OGIB/WCE PE</th>
<th>TOT Patients</th>
<th>Technical problems</th>
<th>Adverse events</th>
<th>Capsule retained for long time (2 or more days)</th>
<th>Capsule blocked intervention required</th>
<th>Not swallowed problems passing stomach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mylonaki et al. 2003,</td>
<td>50</td>
<td>4</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Mata et al. 2004</td>
<td>42</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Adler et al. 2004</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Saurin et al., 2005</td>
<td>60</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Neu et al., 2005</td>
<td>56</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>De Leusse et al., 2007</td>
<td>78</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Van Gossum et al.</td>
<td>21</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>211</td>
<td>9</td>
<td>25</td>
<td>1</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>
Study on OGIB/WCE_others

<table>
<thead>
<tr>
<th>Study on OGIB/WCE_others</th>
<th>TOT Patients</th>
<th>Technical problems</th>
<th>Adverse events</th>
<th>Not swallowed problems passing stomach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Battery failure</td>
<td>Battery expiry</td>
<td>Capsule retained for 2 or more days</td>
</tr>
<tr>
<td>Costamagna et al. 2002</td>
<td>22</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hara et al. 2003</td>
<td>52</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Golder et al. 2006</td>
<td>36</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Saperas et al., 2007</td>
<td>28</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Hartmann et al. 2005</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>185</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Study CD patients

<table>
<thead>
<tr>
<th>Study CD patients</th>
<th>TOT Patients</th>
<th>Technical problems</th>
<th>Adverse events</th>
<th>Not swallowed problems passing stomach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Battery failure</td>
<td>Battery expiry</td>
<td>Capsule retained for 2 or more days</td>
</tr>
<tr>
<td>Buchman et al. 2004</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Eliakim et al. 2004</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Voderholzer et al., 2005</td>
<td>56</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Albert 2005</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HoChong et al., 2005</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Golder et al. 2006,</td>
<td>36</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hartmann et al. 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>281</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Study on FAP patients_WCE</td>
<td>TOT Patients</td>
<td>Technical problems</td>
<td>Adverse events</td>
<td>Not swallowed problems passing stomach</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Battery failure (technical)</td>
<td>Battery expiry (related to physical problem)</td>
<td>Capsule retained for 2 or more days</td>
</tr>
<tr>
<td>Caspari et al 2004</td>
<td>20</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Schulman et al., 2005</td>
<td>40</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wong et al., 2006</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix 6

List of excluded studies with reasons for exclusion

Studies excluded if not a systematic review, editorial, letter, news article, clinical guidelines, conference paper, comment, interview, survey or opinion piece, no author.

Adler, S. N. The probiotic agent Escherichia coli M-17 has a healing effect in patients with IBS with proximal inflammation of the small bowel, eng. Dig Liver Dis. 2006 Sep; 38(9):713; ISSN: 1590-8658

Ahuja, V. Small bowel diagnostics: the taming of the shrew, eng. Trop Gastroenterol. 2006 Apr-2006 Jun 30; 27(2):61-2; ISSN: 0250-636X.

Anonymous. What we have learned from 5 cases of permanent capsule retention, eng. Gastrointest Endosc. 2006 Aug; 64(2):283-7; ISSN: 0016-5107

Cass, O. W. Is half-knowledge worse than ignorance?, eng. Gastrointest Endosc. 2006 Oct; 64(4):542-3; ISSN: 0016-5107

Lashner, B. A. Sensitivity-specificity trade-off for capsule endoscopy in IBD: is it worth it?, eng. Am J Gastroenterol. 2006 May; 101(5):965-6; ISSN: 0002-9270

Lorenzo-Zuniga, V.; Moreno de Vega, V.; Manosa, M.; Domenech, E., and Boix, J. The utility of wireless capsule endoscopy, as compared with barium contrast study, in a case of Peutz-Jeghers syndrome, eng. Acta Gastroenterol Belg. 2006 Oct-2006 Dec 31; 69(4):423; ISSN: 0001-5644

Rondonotti, E. and de Franchis, R. Diagnosing coeliac disease: is the videocapsule a suitable tool?, eng. Dig Liver Dis. 2007 Feb; 39(2):145-7; ISSN: 1590-8658

Sidhu, R.; Sanders, D. S.; Sakellariou, V. P., and McAlindon, M. E. Capsule endoscopy and obscure gastrointestinal bleeding: are transfusion dependence and comorbidity further risk factors to predict a diagnosis?, eng. Am J Gastroenterol. 2007 Jun; 102(6):1329-30; ISSN: 0002-9270

Spada, C.; Riccioni, M. E., and Costamagna, G. Patients with known small bowel stricture or with symptoms of small bowel obstruction secondary to Crohn’s disease should not perform video capsule endoscopy without being previously tested for small bowel patency, eng. Am J Gastroenterol. 2007 Jul; 102(7):1542-3; author reply 1543-4; ISSN: 0002-9270

Viazis, N. and Karamanolis, D. G. Indeterminate colitis—the role of wireless capsule endoscopy, eng. Aliment Pharmacol Ther. 2007 Apr 1; 25(7):859; author reply 860; ISSN: 0269-2813

Anonymous. Wireless esophageal pH monitoring is better tolerated than the catheter-based technique: Results from a randomized cross-over trial. Am. J. Gastroenterol. 2007; 102(2):239-245; ISSN: 0002-9270.

Balzola, F.; Barbon, V.; Repici, A.; Rizzetto, M.; Clauser, D.; Gandione, M., and Sapino, A. Panenteric IBD-like disease in a patient with regressive autism shown for the first time by the wireless capsule enteroscopy: another piece in the jigsaw of this gut-brain syndrome?, eng. Am J Gastroenterol. 2005 Apr; 100(4):979-81; ISSN: 0002-9270

Nakamura, T. When is the optimal timing for performing video capsule endoscopy for obscure gastrointestinal bleeding?, eng. J Gastroenterol. 2005 Mar; 40(3):322-3; ISSN: 0944-1174

Studies excluded if not-human
No study identified

Studies excluded if not on WCE

Croese, J. and Speare, R. Intestinal allergy expels hookworms: seeing is believing, eng. Trends Parasitol. 2006 Dec; 22(12):547-50; ISSN: 1471-4922

Giovannini, I.; Chiarla, C.; Murazio, M.; Clemente, G.; Giulianti, F., and Nuzzo, G. An extreme case of Heyde syndrome, eng. Dig Surg. 2006; 23(5-6):387-8; ISSN: 0253-4886

Gralnek, I. M. Endoscopic research: funding opportunities and mechanisms from the ASGE and beyond., eng. Gastrointest Endosc. 2006 Dec; 64(6 Suppl):S16-8; ISSN: 0016-5107

Karagiannis, S.; Kosmadakis, G.; Goulas, S.; Boletis, J., and Mavrogianis, C. Education and

Leighton, J. A. and Wallace, M. B. Update on small bowel imaging, eng. Gastroenterology. 2007 May; 132(5):1651-4; ISSN: 0016-5085

Rao, R. and Shashidhar, H. Intestinal lymphangiectasia presenting as abdominal mass, eng. Gastrointest Endosc. 2007 Mar; 65(3):522-3, discussion 523; ISSN: 0016-5107

Spyridonos, P.; Vilarino, F.; Vitria, J.; Azpiroz, F., and Radeva, P. Anisotropic feature extraction from endoluminal images for detection of intestinal contractions, eng. Med Image

Marek, T. A. Gastrointestinal bleeding. Endoscopy. 2005; 37(11):1098-1104; ISSN: 0013-726X.

Studies excluded if the topic was not Obscure Gastrointestinal Bleeding (OGIB), Crohn’s disease, familiar polyposis and celiac disease

Antonietti, M.; Savoye, G.; Leclaire, S.; Hecketsweiler, P., and Ben-Soussan, E. A video capsule attached to a probe can be used for prolonged stationary endoscopic monitoring, eng. Endoscopy. 2006 Mar; 38(3):289; ISSN: 0013-726X .

Bayraktar, Y.; Ersoy, O., and Sokmensuer, C. The findings of capsule endoscopy in patients with common variable immunodeficiency syndrome, eng. Hepatogastroenterology. 2007 Jun; 54(76):1034-7; ISSN: 0172-6390.

De Francesco, V.; Stoppino, G.; Tonti, P.; D'Agnessa, M. R.; Castriota, M.; Panella, C., and Ierardi, E. Ileal metastasis from thoracic melanoma disclosed by video capsule endoscopy: an unusual but not extraordinary source of obscure bleeding, ENG. Endoscopy. 2007 Apr 18; ISSN: 1438-8812.

Dra stich, P. [Capsule endoscopy—the past, presence, and future] [Kapslova endoskopie—minulost, pritomnost a budoucnost], cze. Cas Lek Cesk. 2006; 145(6):432-6; ISSN: 0008-7335.

Gralnek, I. M.; Rabinovitz, R.; Afik, D., and Eliakim, R. A simplified ingestion procedure for esophageal capsule endoscopy: initial evaluation in healthy volunteers, eng. Endoscopy. 2006 Sep; 38(9):913-8; ISSN: 0013-726X.

Leighton, J. A. Recent advances in endoscopic capsule imaging: See what we have been missing. Rev. Gastroenterol. Disord. 2006; 6(SUPPL. 1):S19-S27; ISSN: 1533-001X.

Lin, M. C.; Dung, L. R., and Weng, P. K. An ultra-low-power image compressor for capsule endoscope, eng. Biomed Eng Online. 2006; 514; ISSN: 1475-925X.

Nagri, S.; Duddempudi, S.; Anand, S., and Arya, Y. Video capsule endoscopy in the diagnosis of gastrointestinal Kaposi’s sarcoma, ENG. Endoscopy. 2007 Mar 13; ISSN: 0013-726X.

Torroni, F.; De Angelis, P.; Caldaro, T.; Federici, G.; Pane, A.; Romano, C., and Dall’oglio, L. Video capsule diagnosis of intestinal duplication in a 15-year-old patient, eng. Endoscopy. 2006; 38 Suppl 2E10; ISSN: 1438-8812.

Varela-Lema, L. and Ruano-Ravina, A. Development and use of a quality scale for assessing studies that analyze the diagnostic capacity of capsule endoscopy, eng. Endoscopy. 2006 Dec; 38(12):1261-7; ISSN: 0013-726X.

Vignes, S. and Bellanger, J. [Videocapsule endoscopy as a useful tool to diagnose primary intestinal lymphangiectasia] [Interet de l’enteroscopie par videocapsule dans le diagnostic

Delvaux, M.; Ben Soussan, E.; Laurent, V.; Lerebours, E., and Gay, G. Clinical evaluation of the use of the M2A patency capsule system before a capsule endoscopy procedure, in patients with known or suspected intestinal stenosis, eng. Endoscopy. 2005 Sep; 37(9):801-7; ISSN: 0013-726X.

Jonnalagadda, S. and Prakash, C. Intestinal strictures can impede wireless capsule enteroscopy, eng.

Payeras, G.; Piqueras, J.; Moreno, V. J.; Cabrera, A.; Menendez, D., and Jimenez, R. Effects of capsule endoscopy on cardiac pacemakers, eng. Endoscopy. 2005 Dec; 37(12):1181-5; ISSN: 0013-726X.

Schwacha, H. [Capsule endoscopy] [Kapselendoskopie], ger. Schweiz Rundsch Med Prax. 2005 Sep 14; 94(37):1440-2; ISSN: 1013-2058.

Studies excluded if the comparator was not PE, DBE SBS, SBTS, CT, MRI

Adler, S. N.; Jacob, H.; Lijovetzky, G.; Mulder, C. J., and Zwiers, A. Positive coeliac serology in irritable bowel syndrome patients with normal duodenal biopsies: Video capsule endoscopy findings and HLA-DQ typing may affect clinical management, eng. J Gastrointestin Liver Dis. 2006 Sep; 15(3):221-5; ISSN: 1841-8724

Biancone L, Clabrese E et all, Wireless Capsule Endoscopy and Small Intestine Contrast Ultrasonography in Recurrence of Crohn’s Disease, Inflamm Bowel Dis, 2007;13(10);1256:1265.

Leighton, J. A.; Legnani, P., and Seidman, E. G. Role of capsule endoscopy in inflammatory bowel disease: where we are and where we are going, eng. Inflamm Bowel Dis. 2007 Mar; 13(3):331-7; ISSN: 1078-0998.

Rotondano, G.; Riccio, G., and Marmo, R. Capsule enteroscopy vs conventional procedures in diagnosing small bowel diseases: A meta-analysis of controlled trials: ENTEROSCOPIA CON VIDEO CAPSULA VS PROCEDURE CONVENZIONALI NELLA DIAGNOSI DELLE MALAT-

Chao, C. C.; Ng Jao, Y. T., and Mo, L. R. Capsule endoscopy for gastrointestinal bleeding with an obscure etiology, eng. J Formos Med Assoc. 2005 Sep; 104(9):659-65; ISSN: 0929-6646.

Gal, I.; Gynes, I.; Gerdan, J.; Plosz, J.; Kiss, G., and Szegedi, L. [Wireless capsule endoscopy and its role in gastroenterology: our results and a review of the literature] [Kapszulas
endoszkopia helye a gasztroenterológiai diagnosztikaban: irodalmi attekintés saját eredményeink tükreben.], hun. Orv Hetil. 2005 Sep 25; 146(39):2023-8; ISSN: 0030-6002.

Signorelli, C.; Villa, F.; Rondonotti, E.; Abbiati, C.; Beccari, G., and de Franchis, R.
Sensitivity and specificity of the suspected blood identification system in video capsule enteroscopy, eng. Endoscopy. 2005 Dec; 37(12):1170-3; ISSN: 0013-726X.

Studies excluded because less than 10 patients received WCE

Appendix 7

Author questions

<table>
<thead>
<tr>
<th>Answer 1</th>
<th>Answer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>"At the time of the study, PE and enteroclysis were investigations commonly available in the structure to investigate the extent of small bowel disease. We chose the same group of patients as one of our aims was to compare diagnostic yield of the different investigation modalities in the same cohort of patients (i.e. suspected small bowel Crohn's disease). If we were to do the study again today, we would probably choose MRI enteroclysis as the comparator."</td>
<td></td>
</tr>
<tr>
<td>"A few years ago wireless capsule endoscopy was a new method to evaluate the whole small bowel. Every new method have to compare with the standard procedures. This was the reason to perform a study to compare wireless capsule endoscopy is the gold standard, the intraoperative enteroscopy."</td>
<td></td>
</tr>
<tr>
<td>"Crossover design was selected to ensure that each patient was its own control."</td>
<td>"CT and selective angiography are the two angiographic modalities currently used in our hospital."</td>
</tr>
<tr>
<td>"We wanted to determine how accurate WCE was compared to another test (standard endoscopy) in assessing polyps counts and sizes. We had a defined segment of small bowel marked with a tattoo that would allow us to assess how many polyps and the size of the polyps in this segment."</td>
<td>"We used standard endoscopy as the comparator since it is the "gold standard" and was felt to be more accurate than other comparators (enteroclysis, SBFT etc)."</td>
</tr>
<tr>
<td>"If some groups were selected on the study for the comparison of the new different devices, and the skill and knowledge of endoscopy were different, accurate comparison could not be done because of the difference of the technique. All our members were educated for endoscopic technique almost equally. Although the new devices were different, the examiners with equal skills of endoscopy could take part in the comparison. Our group, the department of gastroenterology has several subgroups. The capsule endoscopy and its comparator were performed by the member of different subgroup."</td>
<td>"In Japan, double balloon endoscopy (DBE) was introduced earlier than capsule endoscopy. We thought DBE was actually excellent and Some Japanese doctors have said that it was useful than capsule endoscopy. Thus we planned the comparison of the good devices."</td>
</tr>
</tbody>
</table>
"By introducing a new method it is of utmost importance to compare with other standard methods, of course in the same group of patients."

"In our hospital, CT enteroclysis is the standard method for diagnosing Crohn’s disease. I hope I could answer your questions to your satisfaction."

"As any new diagnostic mean, we felt that a gold standard was of importance to determine efficiently the clinical usefulness of capsule endoscopy."

"Push enteroscopy was at this time the only available not so invasive although this comparator was used by one german team. Please contact the first writer of this email if you require further information or clarification."
APPENDIX 8

Responding Centres

<table>
<thead>
<tr>
<th>Region</th>
<th>Responding Centre</th>
<th>Manager of department</th>
<th>In charge of compilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piemonte</td>
<td>ASL BIELLA</td>
<td>GIUSEPPE MALFITANA</td>
<td>GIUSEPPE MALFITANA</td>
</tr>
<tr>
<td></td>
<td>ASO ORDINE MAURIZIANO</td>
<td>RODOLFO CAVALIERE</td>
<td>RAFFAELLO SOSTEGNI</td>
</tr>
<tr>
<td></td>
<td>ASL ALESSANDRIA</td>
<td>CARLO GEMME</td>
<td>CARLO GEMME</td>
</tr>
<tr>
<td></td>
<td>ASO SANTA CROCE</td>
<td>RENZO FERRARIS</td>
<td>RAFFAELLA PULITANO’</td>
</tr>
<tr>
<td></td>
<td>AO MAGGIORE DELLA CARITA’</td>
<td>MARIO DEL PIANO</td>
<td>STEFANIA CARMAGNOLA</td>
</tr>
<tr>
<td></td>
<td>CASA DI CURA FORNACA</td>
<td>FRANCESCO PAOLO ROSSINI</td>
<td>FRANCESCO PAOLO ROSSINI</td>
</tr>
<tr>
<td></td>
<td>OSPEDALE MARIA VITTORIA</td>
<td>ARNALDO FERRARI</td>
<td>PAOLA SECRETO</td>
</tr>
<tr>
<td></td>
<td>OSPEDALE MOLINETTE</td>
<td>MARIO RIZZETTO</td>
<td>GIORGIO SARTEGNI</td>
</tr>
<tr>
<td></td>
<td>OSPEDALE SAN GIOVANNI AS</td>
<td>ALBERTO FOGO</td>
<td>MARCO PENNAZIO</td>
</tr>
<tr>
<td></td>
<td>OS SS TRINITA (PRESIDIO ASL13)</td>
<td>PIETRO OCCHIPINTI</td>
<td>SILVIA SAETTONE</td>
</tr>
<tr>
<td></td>
<td>OSPEDALE SAN LAZZARO</td>
<td>GIACOMO PRANDI</td>
<td>SABINA MARTINI</td>
</tr>
<tr>
<td>Valle d’Aosta</td>
<td>OSPEDALE BEAUREGARA</td>
<td>SERGIO CROTTA</td>
<td>ROBERTO LOLLI</td>
</tr>
<tr>
<td></td>
<td>CASA DI CURA S.PIOX</td>
<td>MARCO DAL FANTE</td>
<td>MARCO DAL FANTE</td>
</tr>
<tr>
<td></td>
<td>IRCSS FONDAZIONE POLICLINICO</td>
<td>ROBERTO DE FRANCHIS</td>
<td>EMANUELE RONDONOTTI</td>
</tr>
<tr>
<td></td>
<td>MANAGIAGALLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AO VALSELLA E VALCHIAVENNA</td>
<td>GIANFRANCO TRINCA</td>
<td>CARLO PANSONI</td>
</tr>
<tr>
<td>Lombardia</td>
<td>AO SAN CARLO BORROMEO</td>
<td>DOMINGO SPOTTI</td>
<td>MARCO SONCINI</td>
</tr>
<tr>
<td></td>
<td>OSPEDALE SAN GIUSEPPE</td>
<td>EDOARDO FESCE</td>
<td>EDOARDO FESCE</td>
</tr>
<tr>
<td></td>
<td>FONDAZIONE POLIAMBULANZA</td>
<td>ALESSANDRO PATERLINI</td>
<td>PIETRO CESARI</td>
</tr>
<tr>
<td></td>
<td>AO CREMA</td>
<td>ALESSANDRO ZAMBELLI</td>
<td>GUIDO LUPINACCI</td>
</tr>
<tr>
<td></td>
<td>AO DI CIRCOLO MELEGNANO P.O MELLO</td>
<td>IVANA RAGUZZI</td>
<td>PASQUALE DI VITAGLIANO</td>
</tr>
<tr>
<td></td>
<td>OSPEDALE CIRCOLO BUSTO ARSIZIO</td>
<td>EUGENIO LIMIDO</td>
<td>GIRELLI</td>
</tr>
<tr>
<td>Veneto</td>
<td>AO VERONA</td>
<td>LUCIANO BITI</td>
<td>CARLO MANFRINI</td>
</tr>
<tr>
<td></td>
<td>AO DI PADOVA</td>
<td>GIACOMO CARLO STURNIOLO</td>
<td>RENATA D’INCA</td>
</tr>
<tr>
<td></td>
<td>ASL 5 OVEST VICENTINO</td>
<td>ENRICO BOTTONA</td>
<td>MAURIZIO PANTALENA</td>
</tr>
<tr>
<td></td>
<td>ULSS 2 FELTRE</td>
<td>MICHELE DE BONI</td>
<td>MICHELE DE BONI</td>
</tr>
<tr>
<td>Friuli Venezia</td>
<td>CENTRO RIFERIMENTO ONCOLOGICO</td>
<td>RENATO CANNIZZARO</td>
<td>RENATO CANNIZZARO</td>
</tr>
<tr>
<td>Giulia</td>
<td>IRC BURLO GAROFALO CL PEDIATRICA</td>
<td>STEFANO MARTELLOSSI</td>
<td>STEFANO MARTELLOSSI</td>
</tr>
<tr>
<td>Liguria</td>
<td>AZIENDA OSPEDALIERA SANTA CORONA</td>
<td>ROBERTO TESTA</td>
<td>CESARINA RAINISIO</td>
</tr>
<tr>
<td>Emilia Romagna</td>
<td>ARCISPEDALE SANTA MARIA NUOVA</td>
<td>ROMANO SASSATELLI</td>
<td>CRISTINA TIOLI</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>ASL OSP BELLARIA MAGGIORE</td>
<td>NICOLA D’IMPERIO</td>
<td>ANGELA ALBERANI</td>
</tr>
<tr>
<td></td>
<td>ARCISPEDALE SANTA ANNA</td>
<td>SERGIO GULLINI</td>
<td>FRanco PEZZOLI</td>
</tr>
<tr>
<td></td>
<td>OSPEDALE MORGAGNI - PIERANTONI</td>
<td>RICCI ENRICO</td>
<td>LIONELLO GANDOLFI</td>
</tr>
<tr>
<td>Toscana</td>
<td>AO UNIVERSITARIA PISANA</td>
<td>SANTINO MARCHI</td>
<td>LINDA CECCARELLI</td>
</tr>
<tr>
<td></td>
<td>DIP GASTROENTEROLOGIA E MAL</td>
<td>ALFONSO CAPRITA</td>
<td>Emanuele Tumino</td>
</tr>
<tr>
<td></td>
<td>RICAMBIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marche</td>
<td>AO OSPEDALI RIUNITI</td>
<td>IVANO LORENZINI</td>
<td>IVANO LORENZINI</td>
</tr>
<tr>
<td>Lazio</td>
<td>AZIENDA OSPEDALIERA POLICLINICO UMBERTO I</td>
<td>PAOLO PAOLUZI</td>
<td>PAOLO PAOLUZI</td>
</tr>
</tbody>
</table>
| | POLICLINICO GEMELLI | GUIDO COSTAMAGNA | MARIA ELENA RICCI |}

| Abruzzo | ASL L’AQUILA PO SAN SALVATORE | ANTONIETTA PISTOIA | LORETO LOMBARDI |
| Molise | ASR OSPEDALE S S ROSARIO | TOMMASO GAGLIONE | ROBERTO CHIAVERINI |

Campania	OSPEDALE MERCATO SAN SEVERINO ASL SA 2	ATILIO MAURANO	GELSONIMO QUAGLIARIELLO
	AORN SAN G. MOSCATI	GAETANO IAQUINTO	SIMONE DI BELLA
	OSPEDALE SAN GENNARO ASL NA1	SANTO MONASTRA	GIANCARLO CAVARELLI
	ASL SALERNO 3 PO POLLA	RICCARDO MARMO	RICCARDO MARMO
	AO DI RILIEVO NAZIONALE ANTONIO CARDARELLI	GIAN BATTISTA FORTE	MARIA PACELLI
Puglia	AZIENDA OSPEDALI RIUNITI DI FOSSIA	VINCENZO DI FRANCESCO	VINCENZO DI FRANCESCO
	OSPEDALE CIVILE UMBERTO I	GIUSEPPE SCACCIANOCE	GIUSEPPE SCACCIANOCE
	ISTITUTO TUMORI BARI	ANTONIO PELLECHIA	FRANCESCO SCOTTO
	ASL TARANTO OSP SANT’ANNUNZIATA	ANDREA FRUNZIO	ANDREA FRUNZIO
Calabria	AO ANNUNZIATA	PIETRO LEO	PIETRO LEO
	OSPEDALE SAN GIOVANNI DI DIO	ENRICO CILIBERTO	CESARE CAVALIERE
Sicilia	ASL 5 MESSINA	SALVATORE OCERA	SALVATORE OCERA
	OSPEDALE VITTORIO EMANUELE	ANTONIO MAGNANO	ANTONIO MAGNANO
Sardegna	AUSL 7 CARBONIA OSP. S. BARBARA	SERGIO CADONI	PAOLO GAUTIN
Questionnaire

Wireless Capsule Endoscopy
<table>
<thead>
<tr>
<th>Institution</th>
<th>Address</th>
<th>Region</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of institution</th>
<th>Public</th>
<th>Private</th>
<th>Private (operating within the National Health Service)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Outpatient</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Other:</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Manager of department

<table>
<thead>
<tr>
<th></th>
<th>Phone</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In charge of compilation

<table>
<thead>
<tr>
<th></th>
<th>Phone</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Information related to the examinations with Video Endoscopic Capsule (WCE)

1. **Indicate the total number of examination with WCE-year 2006**

<table>
<thead>
<tr>
<th>N° ……</th>
</tr>
</thead>
</table>

2. **Indicate the number of WCE for regime of health service admission**

<table>
<thead>
<tr>
<th>Hospitalization</th>
<th>N°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Outpatient treatment</td>
<td>N°</td>
</tr>
<tr>
<td>Day Hospital</td>
<td>N°</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. **Indicate the number of patients for age group**

<table>
<thead>
<tr>
<th>N°</th>
</tr>
</thead>
<tbody>
<tr>
<td><30</td>
</tr>
<tr>
<td>30-50</td>
</tr>
<tr>
<td>>50</td>
</tr>
</tbody>
</table>

4. **Incomplete/inadequate preparation:**

<table>
<thead>
<tr>
<th>N°</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeated for inadequate preparation</td>
<td>Real data</td>
</tr>
<tr>
<td>Incomplete</td>
<td>Real data</td>
</tr>
<tr>
<td>Other</td>
<td>Real data</td>
</tr>
<tr>
<td></td>
<td>Real data</td>
</tr>
<tr>
<td></td>
<td>Real data</td>
</tr>
<tr>
<td></td>
<td>Real data</td>
</tr>
</tbody>
</table>

5. **Diagnostic test workup pre WCE:**

<table>
<thead>
<tr>
<th>N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonoscopy (CS)</td>
</tr>
<tr>
<td>Rectoscopy (RT)</td>
</tr>
<tr>
<td>Procedure</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>- FOBT</td>
</tr>
<tr>
<td>- EGDS</td>
</tr>
<tr>
<td>- RX small intestine</td>
</tr>
<tr>
<td>- Ileoscopy</td>
</tr>
<tr>
<td>- Double balloon enteroscopy</td>
</tr>
<tr>
<td>- Push enteroscopy</td>
</tr>
<tr>
<td>- Jejunoscopy</td>
</tr>
<tr>
<td>- Arteriography</td>
</tr>
<tr>
<td>- Other</td>
</tr>
</tbody>
</table>

6. Motivation of WCE:

<table>
<thead>
<tr>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- FOBT(+)</td>
</tr>
<tr>
<td>- FOBT(-)</td>
</tr>
<tr>
<td>- Familiar Polyposis</td>
</tr>
<tr>
<td>- Diagnosed IBD</td>
</tr>
<tr>
<td>- Suspected IBD</td>
</tr>
<tr>
<td>- Intestinal Neoplasm</td>
</tr>
<tr>
<td>- Angiodysplasia</td>
</tr>
<tr>
<td>- Peutz-Jeghers Syndrome</td>
</tr>
<tr>
<td>- Hepatic metastasis</td>
</tr>
<tr>
<td>- Other</td>
</tr>
</tbody>
</table>
7. Principal pathology identified with WCE:

<table>
<thead>
<tr>
<th>N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Angiodysplasia</td>
</tr>
<tr>
<td>- Polyposis</td>
</tr>
<tr>
<td>- IBD</td>
</tr>
<tr>
<td>- Coeliac disease</td>
</tr>
<tr>
<td>- NSAID Lesion</td>
</tr>
<tr>
<td>- Gist jejunum</td>
</tr>
<tr>
<td>- Lipoma</td>
</tr>
<tr>
<td>- Gastric Bleeding</td>
</tr>
<tr>
<td>- Duodenal Ulcer</td>
</tr>
<tr>
<td>- Other:</td>
</tr>
</tbody>
</table>

8. Complications of the procedure:

<table>
<thead>
<tr>
<th>N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Intestinal occlusion</td>
</tr>
<tr>
<td>- Other:</td>
</tr>
</tbody>
</table>

9. Type of regime of health service admission for complications:

<table>
<thead>
<tr>
<th></th>
<th>Outpatient treatment</th>
<th>Day Hospital</th>
<th>Hospitalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10. Is a diet recommended before the examination? □ Yes □ No

11. If yes, specify

12. Is an enema recommended before the examination? □ Yes □ No

13. Which solution is used for the intestinal preparation?
 □ Poliethilenglicole (PEG)
 □ Sodium-phosphate
 □ Other (specify)

14. What percentage is furnished free of charge from the hospital?
 – Outpatient treatment
 – Day Hospital

15. Indicate the clinical or surgical decisions following the WCE:
 1)
 2)
 3)
16. Are drugs used before the WCE examination?

- Yes
- No

17. If yes, specify:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Unit quantity</th>
<th>Unit cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18. Staff time (minutes) for one WCE procedure:

<table>
<thead>
<tr>
<th></th>
<th>WCE</th>
<th>Diagnosis</th>
<th>Consultation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Middle time dedicated (minutes)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nurse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Average time dedicated (minutes)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support (auxiliaries)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Average time dedicated (minutes)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Average time dedicated (minutes)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total time</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*for patient
19. Consumables for one standard WCE procedure:

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit quantity</th>
<th>Unit cost</th>
<th>Manufacturer (only WCE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsule Endoscopy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Capsule Endoscopy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical gauze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical gloves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disinfectant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20. Indicate the stationery:

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit quantity</th>
<th>Unit cost</th>
<th>Disposable</th>
<th>Reusable</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cartridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitised paper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ Disposable ☐ Reusable ☐ Both
21. Indicate the equipment:

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>year</th>
<th>Unit cost</th>
<th>Maintenance cost</th>
<th>Year of amortization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware + software*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipped trolley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Total cost
APPENDIX 10

Wireless capsule and traditional endoscopy: patient acceptability
1. The ingestion of the capsule has been:
 □ Very easy
 □ Easy
 □ Tolerable
 □ Difficult
 □ Very difficult

2. Did you experience pain during the procedure?
 □ No pain
 □ Mild
 □ Moderate
 □ Severe
 □ Extreme

3. Did you experience pain after the procedure?
 □ No pain
 □ Mild
 □ Moderate
 □ Severe
 □ Extreme

4. During the hours of tracking which of the following inconveniences did you have?:

<table>
<thead>
<tr>
<th>A) Difficulty to move</th>
<th>□ Yes □ No</th>
<th>B) Impossibility to go in some places:</th>
<th>□ Yes □ No</th>
<th>C) State of anxiety</th>
<th>□ Yes □ No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td></td>
<td>Minimum</td>
<td></td>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>Medium</td>
<td></td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td></td>
<td>Severe</td>
<td></td>
<td>Severe</td>
<td></td>
</tr>
<tr>
<td>Very Severe</td>
<td></td>
<td>Very Severe</td>
<td></td>
<td>Very Severe</td>
<td></td>
</tr>
</tbody>
</table>

5. How would you appraise the overall tolerability of this type of procedure?
 □ High
 □ Middle
 □ Low
6. Time subtracted from normal activities
 - 0-2 hours
 - 3-4 hours
 - 5-6 hours
 - 7-8 hours
 - > 8 hours

7. How would you evaluate the way the results were communicated?
 - Optimal
 - Good
 - Mean
 - Insufficient
 - Bad

8. Have you undergone other endoscopic procedures?
 - Colonoscopy/Ileoscopy
 - EGDS

The questions that follow concern the endoscopic procedure referred to in question 8

9. The procedure CS/EGDS was:
 - Very easy
 - Easy
 - Tolerable
 - Difficult
 - Very difficult

10. Did you experience pain during the procedure?
 - No pain
 - Mild
 - Moderate
 - Severe
 - Extreme
11. Did you experience pain after the procedure?
 □ No pain
 □ Mild
 □ Moderate
 □ Severe
 □ Extreme

12. Difficult to move and state of anxiety of CS/EGDS
 A) Difficulty to move: □ YES □ NO
 □ Minimum
 □ Medium
 □ Severe
 □ Very Severe

 C) State of anxiety: □ YES □ NO
 □ Minimum
 □ Medium
 □ Severe
 □ Very Severe

13. Overall how would you evaluate the tolerability of this type of procedure?
 □ High
 □ Middle
 □ Low

14. Time subtracted from normal activities
 □ 0-2 hours
 □ 3-4 hours
 □ 5-6 hours
 □ 7-8 hours
 □ > 8 hours

15. How would you evaluate the way the results were communicated?
 □ Optimal
 □ Good
 □ Mean
 □ Insufficient
 □ Bad
Additional information

16. Age _____

17. Gender:
 □ M
 □ F

18. Status
 □ Single
 □ Married
 □ Cohabiting

19. Education:
 □ Primary school
 □ Secondary school
 □ Degree
 □ Master

20. Occupation:
 □ worker
 □ Employee
 □ Manager
 □ Trader
 □ Entrepreneur
 □ Student
 □ Housewife
 □ Consultant
 □ Retired
 □ Unemployed
 □ Other